Copied to
clipboard

G = C2×D4×C7⋊C3order 336 = 24·3·7

Direct product of C2, D4 and C7⋊C3

direct product, metabelian, supersoluble, monomial

Aliases: C2×D4×C7⋊C3, (D4×C14)⋊C3, C74(C6×D4), C284(C2×C6), (C2×C28)⋊4C6, (C7×D4)⋊5C6, C143(C3×D4), (C22×C14)⋊5C6, C14.12(C22×C6), C4⋊(C22×C7⋊C3), C233(C2×C7⋊C3), (C2×C14)⋊6(C2×C6), (C4×C7⋊C3)⋊4C22, (C23×C7⋊C3)⋊3C2, C2.2(C23×C7⋊C3), C222(C22×C7⋊C3), (C2×C7⋊C3).12C23, (C22×C7⋊C3)⋊4C22, (C2×C4×C7⋊C3)⋊4C2, (C2×C4)⋊2(C2×C7⋊C3), SmallGroup(336,165)

Series: Derived Chief Lower central Upper central

C1C14 — C2×D4×C7⋊C3
C1C7C14C2×C7⋊C3C22×C7⋊C3C23×C7⋊C3 — C2×D4×C7⋊C3
C7C14 — C2×D4×C7⋊C3
C1C22C2×D4

Generators and relations for C2×D4×C7⋊C3
 G = < a,b,c,d,e | a2=b4=c2=d7=e3=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

Subgroups: 350 in 108 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C7, C2×C4, D4, C23, C12, C2×C6, C14, C14, C14, C2×D4, C7⋊C3, C2×C12, C3×D4, C22×C6, C28, C2×C14, C2×C14, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C2×C7⋊C3, C6×D4, C2×C28, C7×D4, C22×C14, C4×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, D4×C14, C2×C4×C7⋊C3, D4×C7⋊C3, C23×C7⋊C3, C2×D4×C7⋊C3
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C7⋊C3, C3×D4, C22×C6, C2×C7⋊C3, C6×D4, C22×C7⋊C3, D4×C7⋊C3, C23×C7⋊C3, C2×D4×C7⋊C3

Smallest permutation representation of C2×D4×C7⋊C3
On 56 points
Generators in S56
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 50 8 43)(2 51 9 44)(3 52 10 45)(4 53 11 46)(5 54 12 47)(6 55 13 48)(7 56 14 49)(15 36 22 29)(16 37 23 30)(17 38 24 31)(18 39 25 32)(19 40 26 33)(20 41 27 34)(21 42 28 35)
(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)

G:=sub<Sym(56)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,50,8,43)(2,51,9,44)(3,52,10,45)(4,53,11,46)(5,54,12,47)(6,55,13,48)(7,56,14,49)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,50,8,43)(2,51,9,44)(3,52,10,45)(4,53,11,46)(5,54,12,47)(6,55,13,48)(7,56,14,49)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,50,8,43),(2,51,9,44),(3,52,10,45),(4,53,11,46),(5,54,12,47),(6,55,13,48),(7,56,14,49),(15,36,22,29),(16,37,23,30),(17,38,24,31),(18,39,25,32),(19,40,26,33),(20,41,27,34),(21,42,28,35)], [(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B6A···6F6G···6N7A7B12A12B12C12D14A···14F14G···14N28A28B28C28D
order1222222233446···66···6771212121214···1414···1428282828
size1111222277227···714···1433141414143···36···66666

50 irreducible representations

dim111111112233336
type+++++
imageC1C2C2C2C3C6C6C6D4C3×D4C7⋊C3C2×C7⋊C3C2×C7⋊C3C2×C7⋊C3D4×C7⋊C3
kernelC2×D4×C7⋊C3C2×C4×C7⋊C3D4×C7⋊C3C23×C7⋊C3D4×C14C2×C28C7×D4C22×C14C2×C7⋊C3C14C2×D4C2×C4D4C23C2
# reps114222842422844

Matrix representation of C2×D4×C7⋊C3 in GL7(𝔽337)

336000000
033600000
0010000
0001000
0000100
0000010
0000001
,
336200000
336100000
000336000
0010000
0000100
0000010
0000001
,
1000000
133600000
0010000
000336000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000001
000010125
000001124
,
1000000
0100000
0010000
0001000
00001242120
00003362131
000033610

G:=sub<GL(7,GF(337))| [336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[336,336,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,125,124],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,124,336,336,0,0,0,0,212,213,1,0,0,0,0,0,1,0] >;

C2×D4×C7⋊C3 in GAP, Magma, Sage, TeX

C_2\times D_4\times C_7\rtimes C_3
% in TeX

G:=Group("C2xD4xC7:C3");
// GroupNames label

G:=SmallGroup(336,165);
// by ID

G=gap.SmallGroup(336,165);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,260,455]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^7=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽