Copied to
clipboard

G = C4○D4×C7⋊C3order 336 = 24·3·7

Direct product of C4○D4 and C7⋊C3

direct product, metabelian, supersoluble, monomial

Aliases: C4○D4×C7⋊C3, (C2×C28)⋊5C6, (C7×D4)⋊6C6, (C7×Q8)⋊10C6, C28.21(C2×C6), C14.14(C22×C6), (D4×C7⋊C3)⋊5C2, D42(C2×C7⋊C3), C74(C3×C4○D4), Q83(C2×C7⋊C3), (Q8×C7⋊C3)⋊5C2, (C7×C4○D4)⋊2C3, C4.5(C22×C7⋊C3), C2.4(C23×C7⋊C3), C22.(C22×C7⋊C3), (C2×C14).12(C2×C6), (C4×C7⋊C3).21C22, (C2×C7⋊C3).14C23, (C22×C7⋊C3).12C22, (C2×C4×C7⋊C3)⋊5C2, (C2×C4)⋊3(C2×C7⋊C3), SmallGroup(336,167)

Series: Derived Chief Lower central Upper central

C1C14 — C4○D4×C7⋊C3
C1C7C14C2×C7⋊C3C22×C7⋊C3C2×C4×C7⋊C3 — C4○D4×C7⋊C3
C7C14 — C4○D4×C7⋊C3
C1C4C4○D4

Generators and relations for C4○D4×C7⋊C3
 G = < a,b,c,d,e | a4=c2=d7=e3=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, cbc=a2b, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

Subgroups: 230 in 80 conjugacy classes, 51 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C7, C2×C4, D4, Q8, C12, C2×C6, C14, C14, C4○D4, C7⋊C3, C2×C12, C3×D4, C3×Q8, C28, C28, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C3×C4○D4, C2×C28, C7×D4, C7×Q8, C4×C7⋊C3, C4×C7⋊C3, C22×C7⋊C3, C7×C4○D4, C2×C4×C7⋊C3, D4×C7⋊C3, Q8×C7⋊C3, C4○D4×C7⋊C3
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C4○D4, C7⋊C3, C22×C6, C2×C7⋊C3, C3×C4○D4, C22×C7⋊C3, C23×C7⋊C3, C4○D4×C7⋊C3

Smallest permutation representation of C4○D4×C7⋊C3
On 56 points
Generators in S56
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 43 22 50)(16 44 23 51)(17 45 24 52)(18 46 25 53)(19 47 26 54)(20 48 27 55)(21 49 28 56)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)

G:=sub<Sym(56)| (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)>;

G:=Group( (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55) );

G=PermutationGroup([[(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,43,22,50),(16,44,23,51),(17,45,24,52),(18,46,25,53),(19,47,26,54),(20,48,27,55),(21,49,28,56)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55)]])

50 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E6A6B6C···6H7A7B12A12B12C12D12E···12J14A14B14C···14H28A28B28C28D28E···28J
order122223344444666···6771212121212···12141414···142828282828···28
size1122277112227714···1433777714···14336···633336···6

50 irreducible representations

dim111111112233336
type++++
imageC1C2C2C2C3C6C6C6C4○D4C3×C4○D4C7⋊C3C2×C7⋊C3C2×C7⋊C3C2×C7⋊C3C4○D4×C7⋊C3
kernelC4○D4×C7⋊C3C2×C4×C7⋊C3D4×C7⋊C3Q8×C7⋊C3C7×C4○D4C2×C28C7×D4C7×Q8C7⋊C3C7C4○D4C2×C4D4Q8C1
# reps133126622426624

Matrix representation of C4○D4×C7⋊C3 in GL5(𝔽337)

1890000
0189000
0033600
0003360
0000336
,
1890000
0148000
0033600
0003360
0000336
,
01000
10000
0033600
0003360
0000336
,
10000
01000
003361241
0001241
003361251
,
10000
01000
001251213
00100
0011212

G:=sub<GL(5,GF(337))| [189,0,0,0,0,0,189,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[189,0,0,0,0,0,148,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[0,1,0,0,0,1,0,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,336,0,336,0,0,124,124,125,0,0,1,1,1],[1,0,0,0,0,0,1,0,0,0,0,0,125,1,1,0,0,1,0,1,0,0,213,0,212] >;

C4○D4×C7⋊C3 in GAP, Magma, Sage, TeX

C_4\circ D_4\times C_7\rtimes C_3
% in TeX

G:=Group("C4oD4xC7:C3");
// GroupNames label

G:=SmallGroup(336,167);
// by ID

G=gap.SmallGroup(336,167);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,151,506,455]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^7=e^3=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽