Copied to
clipboard

G = C2×He3.2C6order 324 = 22·34

Direct product of C2 and He3.2C6

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He3.2C6, (C3×C9)⋊7D6, (C3×C18)⋊3S3, He3⋊C22C6, He3.2(C2×C6), (C2×He3).5C6, C32.3(S3×C6), C6.17(C32⋊C6), He3⋊C32C22, (C3×C6).6(C3×S3), C3.8(C2×C32⋊C6), (C2×He3⋊C2)⋊2C3, (C2×He3⋊C3)⋊1C2, SmallGroup(324,72)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3.2C6
C1C3C32He3He3⋊C3He3.2C6 — C2×He3.2C6
He3 — C2×He3.2C6
C1C6

Generators and relations for C2×He3.2C6
 G = < a,b,c,d,e | a2=b3=c3=d3=1, e6=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1c, cd=dc, ce=ec, ede-1=b-1d-1 >

Subgroups: 268 in 56 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, C18, C3×S3, C3×C6, C3×C6, C3×C9, He3, He3, C2×C18, S3×C6, S3×C9, He3⋊C2, C3×C18, C2×He3, C2×He3, He3⋊C3, S3×C18, C2×He3⋊C2, He3.2C6, C2×He3⋊C3, C2×He3.2C6
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S3×C6, C32⋊C6, C2×C32⋊C6, He3.2C6, C2×He3.2C6

Smallest permutation representation of C2×He3.2C6
On 54 points
Generators in S54
(1 18)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(9 17)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)
(1 27 30)(2 19 22)(3 29 32)(4 21 24)(5 31 34)(6 23 26)(7 33 36)(8 25 28)(9 35 20)(10 48 51)(11 40 43)(12 50 53)(13 42 45)(14 52 37)(15 44 47)(16 54 39)(17 46 49)(18 38 41)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)
(1 30 21)(3 29 20)(4 24 33)(6 23 32)(7 36 27)(9 35 26)(11 40 49)(12 53 44)(14 52 43)(15 47 38)(17 46 37)(18 41 50)(19 25 31)(22 34 28)(39 51 45)(42 48 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,27,30)(2,19,22)(3,29,32)(4,21,24)(5,31,34)(6,23,26)(7,33,36)(8,25,28)(9,35,20)(10,48,51)(11,40,43)(12,50,53)(13,42,45)(14,52,37)(15,44,47)(16,54,39)(17,46,49)(18,38,41), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (1,30,21)(3,29,20)(4,24,33)(6,23,32)(7,36,27)(9,35,26)(11,40,49)(12,53,44)(14,52,43)(15,47,38)(17,46,37)(18,41,50)(19,25,31)(22,34,28)(39,51,45)(42,48,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,27,30)(2,19,22)(3,29,32)(4,21,24)(5,31,34)(6,23,26)(7,33,36)(8,25,28)(9,35,20)(10,48,51)(11,40,43)(12,50,53)(13,42,45)(14,52,37)(15,44,47)(16,54,39)(17,46,49)(18,38,41), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (1,30,21)(3,29,20)(4,24,33)(6,23,32)(7,36,27)(9,35,26)(11,40,49)(12,53,44)(14,52,43)(15,47,38)(17,46,37)(18,41,50)(19,25,31)(22,34,28)(39,51,45)(42,48,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,18),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(9,17),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47)], [(1,27,30),(2,19,22),(3,29,32),(4,21,24),(5,31,34),(6,23,26),(7,33,36),(8,25,28),(9,35,20),(10,48,51),(11,40,43),(12,50,53),(13,42,45),(14,52,37),(15,44,47),(16,54,39),(17,46,49),(18,38,41)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54)], [(1,30,21),(3,29,20),(4,24,33),(6,23,32),(7,36,27),(9,35,26),(11,40,49),(12,53,44),(14,52,43),(15,47,38),(17,46,37),(18,41,50),(19,25,31),(22,34,28),(39,51,45),(42,48,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

44 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F6A6B6C6D6E6F6G6H6I6J9A···9F18A···18F18G···18R
order122233333366666666669···918···1818···18
size119911618181811699991818183···33···39···9

44 irreducible representations

dim11111122223366
type+++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6He3.2C6C2×He3.2C6C32⋊C6C2×C32⋊C6
kernelC2×He3.2C6He3.2C6C2×He3⋊C3C2×He3⋊C2He3⋊C2C2×He3C3×C18C3×C9C3×C6C32C2C1C6C3
# reps1212421122121211

Matrix representation of C2×He3.2C6 in GL5(𝔽19)

180000
018000
00100
00010
00001
,
10000
01000
00070
00007
00700
,
10000
01000
00700
00070
00007
,
181000
180000
00001
001100
00070
,
011000
110000
00151513
00131013
00151010

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,7,0,0,7,0,0,0,0,0,7,0],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[18,18,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,7,0,0,1,0,0],[0,11,0,0,0,11,0,0,0,0,0,0,15,13,15,0,0,15,10,10,0,0,13,13,10] >;

C2×He3.2C6 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3._2C_6
% in TeX

G:=Group("C2xHe3.2C6");
// GroupNames label

G:=SmallGroup(324,72);
// by ID

G=gap.SmallGroup(324,72);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,500,579,303,5404,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=1,e^6=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*d^-1>;
// generators/relations

׿
×
𝔽