direct product, non-abelian, supersoluble, monomial
Aliases: C2×He3.2C6, (C3×C9)⋊7D6, (C3×C18)⋊3S3, He3⋊C2⋊2C6, He3.2(C2×C6), (C2×He3).5C6, C32.3(S3×C6), C6.17(C32⋊C6), He3⋊C3⋊2C22, (C3×C6).6(C3×S3), C3.8(C2×C32⋊C6), (C2×He3⋊C2)⋊2C3, (C2×He3⋊C3)⋊1C2, SmallGroup(324,72)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C2×He3.2C6 |
Generators and relations for C2×He3.2C6
G = < a,b,c,d,e | a2=b3=c3=d3=1, e6=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1c, cd=dc, ce=ec, ede-1=b-1d-1 >
Subgroups: 268 in 56 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, C18, C3×S3, C3×C6, C3×C6, C3×C9, He3, He3, C2×C18, S3×C6, S3×C9, He3⋊C2, C3×C18, C2×He3, C2×He3, He3⋊C3, S3×C18, C2×He3⋊C2, He3.2C6, C2×He3⋊C3, C2×He3.2C6
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S3×C6, C32⋊C6, C2×C32⋊C6, He3.2C6, C2×He3.2C6
(1 18)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(9 17)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)
(1 27 30)(2 19 22)(3 29 32)(4 21 24)(5 31 34)(6 23 26)(7 33 36)(8 25 28)(9 35 20)(10 48 51)(11 40 43)(12 50 53)(13 42 45)(14 52 37)(15 44 47)(16 54 39)(17 46 49)(18 38 41)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)
(1 30 21)(3 29 20)(4 24 33)(6 23 32)(7 36 27)(9 35 26)(11 40 49)(12 53 44)(14 52 43)(15 47 38)(17 46 37)(18 41 50)(19 25 31)(22 34 28)(39 51 45)(42 48 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,27,30)(2,19,22)(3,29,32)(4,21,24)(5,31,34)(6,23,26)(7,33,36)(8,25,28)(9,35,20)(10,48,51)(11,40,43)(12,50,53)(13,42,45)(14,52,37)(15,44,47)(16,54,39)(17,46,49)(18,38,41), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (1,30,21)(3,29,20)(4,24,33)(6,23,32)(7,36,27)(9,35,26)(11,40,49)(12,53,44)(14,52,43)(15,47,38)(17,46,37)(18,41,50)(19,25,31)(22,34,28)(39,51,45)(42,48,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;
G:=Group( (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,27,30)(2,19,22)(3,29,32)(4,21,24)(5,31,34)(6,23,26)(7,33,36)(8,25,28)(9,35,20)(10,48,51)(11,40,43)(12,50,53)(13,42,45)(14,52,37)(15,44,47)(16,54,39)(17,46,49)(18,38,41), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (1,30,21)(3,29,20)(4,24,33)(6,23,32)(7,36,27)(9,35,26)(11,40,49)(12,53,44)(14,52,43)(15,47,38)(17,46,37)(18,41,50)(19,25,31)(22,34,28)(39,51,45)(42,48,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,18),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(9,17),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47)], [(1,27,30),(2,19,22),(3,29,32),(4,21,24),(5,31,34),(6,23,26),(7,33,36),(8,25,28),(9,35,20),(10,48,51),(11,40,43),(12,50,53),(13,42,45),(14,52,37),(15,44,47),(16,54,39),(17,46,49),(18,38,41)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54)], [(1,30,21),(3,29,20),(4,24,33),(6,23,32),(7,36,27),(9,35,26),(11,40,49),(12,53,44),(14,52,43),(15,47,38),(17,46,37),(18,41,50),(19,25,31),(22,34,28),(39,51,45),(42,48,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 9A | ··· | 9F | 18A | ··· | 18F | 18G | ··· | 18R |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 9 | 9 | 1 | 1 | 6 | 18 | 18 | 18 | 1 | 1 | 6 | 9 | 9 | 9 | 9 | 18 | 18 | 18 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | S3×C6 | He3.2C6 | C2×He3.2C6 | C32⋊C6 | C2×C32⋊C6 |
kernel | C2×He3.2C6 | He3.2C6 | C2×He3⋊C3 | C2×He3⋊C2 | He3⋊C2 | C2×He3 | C3×C18 | C3×C9 | C3×C6 | C32 | C2 | C1 | C6 | C3 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 2 | 12 | 12 | 1 | 1 |
Matrix representation of C2×He3.2C6 ►in GL5(𝔽19)
18 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 7 |
0 | 0 | 7 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 7 |
18 | 1 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 7 | 0 |
0 | 11 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 15 | 13 |
0 | 0 | 13 | 10 | 13 |
0 | 0 | 15 | 10 | 10 |
G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,7,0,0,7,0,0,0,0,0,7,0],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[18,18,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,7,0,0,1,0,0],[0,11,0,0,0,11,0,0,0,0,0,0,15,13,15,0,0,15,10,10,0,0,13,13,10] >;
C2×He3.2C6 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3._2C_6
% in TeX
G:=Group("C2xHe3.2C6");
// GroupNames label
G:=SmallGroup(324,72);
// by ID
G=gap.SmallGroup(324,72);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,500,579,303,5404,382]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=1,e^6=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*d^-1>;
// generators/relations