Copied to
clipboard

G = C2×He3.C6order 324 = 22·34

Direct product of C2 and He3.C6

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He3.C6, (C3×C9)⋊6D6, (C3×C18)⋊2S3, He3⋊C2.C6, (C2×He3).4C6, He3.1(C2×C6), C32.2(S3×C6), He3.C34C22, C6.16(C32⋊C6), (C3×C6).5(C3×S3), (C2×He3⋊C2).C3, C3.7(C2×C32⋊C6), (C2×He3.C3)⋊3C2, SmallGroup(324,70)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3.C6
C1C3C32He3He3.C3He3.C6 — C2×He3.C6
He3 — C2×He3.C6
C1C6

Generators and relations for C2×He3.C6
 G = < a,b,c,d,e | a2=b3=c3=d3=1, e6=c-1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1c, cd=dc, ce=ec, ede-1=b-1d-1 >

9C2
9C2
3C3
9C3
9C22
3C6
3S3
3S3
9C6
9C6
9S3
9S3
9C6
3C32
3C9
6C9
3D6
9C2×C6
9D6
3C3×C6
3C18
3C3×S3
3C3×S3
6C18
9C3×S3
9C18
9C3×S3
9C18
23- 1+2
3S3×C6
9C2×C18
9S3×C6
2C2×3- 1+2
3S3×C9
3S3×C9
3S3×C18

Smallest permutation representation of C2×He3.C6
On 54 points
Generators in S54
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 20 41)(2 54 27)(3 22 43)(4 38 29)(5 24 45)(6 40 31)(7 26 47)(8 42 33)(9 28 49)(10 44 35)(11 30 51)(12 46 19)(13 32 53)(14 48 21)(15 34 37)(16 50 23)(17 36 39)(18 52 25)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)
(2 54 21)(3 43 28)(5 24 39)(6 31 46)(8 42 27)(9 49 34)(11 30 45)(12 19 52)(14 48 33)(15 37 22)(17 36 51)(18 25 40)(20 32 26)(23 29 35)(38 50 44)(41 47 53)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,20,41)(2,54,27)(3,22,43)(4,38,29)(5,24,45)(6,40,31)(7,26,47)(8,42,33)(9,28,49)(10,44,35)(11,30,51)(12,46,19)(13,32,53)(14,48,21)(15,34,37)(16,50,23)(17,36,39)(18,52,25), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48), (2,54,21)(3,43,28)(5,24,39)(6,31,46)(8,42,27)(9,49,34)(11,30,45)(12,19,52)(14,48,33)(15,37,22)(17,36,51)(18,25,40)(20,32,26)(23,29,35)(38,50,44)(41,47,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,20,41)(2,54,27)(3,22,43)(4,38,29)(5,24,45)(6,40,31)(7,26,47)(8,42,33)(9,28,49)(10,44,35)(11,30,51)(12,46,19)(13,32,53)(14,48,21)(15,34,37)(16,50,23)(17,36,39)(18,52,25), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48), (2,54,21)(3,43,28)(5,24,39)(6,31,46)(8,42,27)(9,49,34)(11,30,45)(12,19,52)(14,48,33)(15,37,22)(17,36,51)(18,25,40)(20,32,26)(23,29,35)(38,50,44)(41,47,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,20,41),(2,54,27),(3,22,43),(4,38,29),(5,24,45),(6,40,31),(7,26,47),(8,42,33),(9,28,49),(10,44,35),(11,30,51),(12,46,19),(13,32,53),(14,48,21),(15,34,37),(16,50,23),(17,36,39),(18,52,25)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48)], [(2,54,21),(3,43,28),(5,24,39),(6,31,46),(8,42,27),(9,49,34),(11,30,45),(12,19,52),(14,48,33),(15,37,22),(17,36,51),(18,25,40),(20,32,26),(23,29,35),(38,50,44),(41,47,53)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

44 conjugacy classes

class 1 2A2B2C3A3B3C3D6A6B6C6D6E6F6G6H9A···9F9G9H18A···18F18G···18R18S18T
order12223333666666669···99918···1818···181818
size1199116181169999183···318183···39···91818

44 irreducible representations

dim11111122223366
type+++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6He3.C6C2×He3.C6C32⋊C6C2×C32⋊C6
kernelC2×He3.C6He3.C6C2×He3.C3C2×He3⋊C2He3⋊C2C2×He3C3×C18C3×C9C3×C6C32C2C1C6C3
# reps1212421122121211

Matrix representation of C2×He3.C6 in GL5(𝔽19)

180000
018000
00100
00010
00001
,
10000
01000
00001
00100
00010
,
10000
01000
00700
00070
00007
,
1818000
10000
00100
00070
000011
,
180000
11000
008812
00121812
0081818

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[18,1,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,11],[18,1,0,0,0,0,1,0,0,0,0,0,8,12,8,0,0,8,18,18,0,0,12,12,18] >;

C2×He3.C6 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3.C_6
% in TeX

G:=Group("C2xHe3.C6");
// GroupNames label

G:=SmallGroup(324,70);
// by ID

G=gap.SmallGroup(324,70);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,500,579,303,8644,652]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=1,e^6=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*d^-1>;
// generators/relations

Export

Subgroup lattice of C2×He3.C6 in TeX

׿
×
𝔽