Extensions 1→N→G→Q→1 with N=Dic3 and Q=D14

Direct product G=N×Q with N=Dic3 and Q=D14
dρLabelID
C2×Dic3×D7168C2xDic3xD7336,151

Semidirect products G=N:Q with N=Dic3 and Q=D14
extensionφ:Q→Out NdρLabelID
Dic31D14 = D7×C3⋊D4φ: D14/D7C2 ⊆ Out Dic3844Dic3:1D14336,161
Dic32D14 = D6⋊D14φ: D14/D7C2 ⊆ Out Dic3844+Dic3:2D14336,163
Dic33D14 = S3×D28φ: D14/C14C2 ⊆ Out Dic3844+Dic3:3D14336,149
Dic34D14 = C2×C3⋊D28φ: D14/C14C2 ⊆ Out Dic3168Dic3:4D14336,158
Dic35D14 = C4×S3×D7φ: trivial image844Dic3:5D14336,147
Dic36D14 = C2×D21⋊C4φ: trivial image168Dic3:6D14336,156

Non-split extensions G=N.Q with N=Dic3 and Q=D14
extensionφ:Q→Out NdρLabelID
Dic3.1D14 = D7×Dic6φ: D14/D7C2 ⊆ Out Dic31684-Dic3.1D14336,137
Dic3.2D14 = D28⋊S3φ: D14/D7C2 ⊆ Out Dic31684Dic3.2D14336,139
Dic3.3D14 = D21⋊Q8φ: D14/D7C2 ⊆ Out Dic31684Dic3.3D14336,143
Dic3.4D14 = D14.D6φ: D14/D7C2 ⊆ Out Dic31684+Dic3.4D14336,146
Dic3.5D14 = C42.C23φ: D14/D7C2 ⊆ Out Dic31684-Dic3.5D14336,153
Dic3.6D14 = Dic3.D14φ: D14/D7C2 ⊆ Out Dic31684Dic3.6D14336,155
Dic3.7D14 = S3×Dic14φ: D14/C14C2 ⊆ Out Dic31684-Dic3.7D14336,140
Dic3.8D14 = D6.D14φ: D14/C14C2 ⊆ Out Dic31684Dic3.8D14336,144
Dic3.9D14 = C2×C21⋊Q8φ: D14/C14C2 ⊆ Out Dic3336Dic3.9D14336,160
Dic3.10D14 = D285S3φ: trivial image1684-Dic3.10D14336,138
Dic3.11D14 = D84⋊C2φ: trivial image1684+Dic3.11D14336,142
Dic3.12D14 = Dic7.D6φ: trivial image1684Dic3.12D14336,152

׿
×
𝔽