Extensions 1→N→G→Q→1 with N=Dic7 and Q=D6

Direct product G=NxQ with N=Dic7 and Q=D6
dρLabelID
C2xS3xDic7168C2xS3xDic7336,154

Semidirect products G=N:Q with N=Dic7 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic7:1D6 = S3xC7:D4φ: D6/S3C2 ⊆ Out Dic7844Dic7:1D6336,162
Dic7:2D6 = D6:D14φ: D6/S3C2 ⊆ Out Dic7844+Dic7:2D6336,163
Dic7:3D6 = D7xD12φ: D6/C6C2 ⊆ Out Dic7844+Dic7:3D6336,148
Dic7:4D6 = C2xC7:D12φ: D6/C6C2 ⊆ Out Dic7168Dic7:4D6336,159
Dic7:5D6 = C4xS3xD7φ: trivial image844Dic7:5D6336,147
Dic7:6D6 = C2xD21:C4φ: trivial image168Dic7:6D6336,156

Non-split extensions G=N.Q with N=Dic7 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic7.1D6 = S3xDic14φ: D6/S3C2 ⊆ Out Dic71684-Dic7.1D6336,140
Dic7.2D6 = D12:D7φ: D6/S3C2 ⊆ Out Dic71684Dic7.2D6336,141
Dic7.3D6 = D84:C2φ: D6/S3C2 ⊆ Out Dic71684+Dic7.3D6336,142
Dic7.4D6 = D21:Q8φ: D6/S3C2 ⊆ Out Dic71684Dic7.4D6336,143
Dic7.5D6 = Dic7.D6φ: D6/S3C2 ⊆ Out Dic71684Dic7.5D6336,152
Dic7.6D6 = C42.C23φ: D6/S3C2 ⊆ Out Dic71684-Dic7.6D6336,153
Dic7.7D6 = D7xDic6φ: D6/C6C2 ⊆ Out Dic71684-Dic7.7D6336,137
Dic7.8D6 = D6.D14φ: D6/C6C2 ⊆ Out Dic71684Dic7.8D6336,144
Dic7.9D6 = Dic3.D14φ: D6/C6C2 ⊆ Out Dic71684Dic7.9D6336,155
Dic7.10D6 = C2xC21:Q8φ: D6/C6C2 ⊆ Out Dic7336Dic7.10D6336,160
Dic7.11D6 = D12:5D7φ: trivial image1684-Dic7.11D6336,145
Dic7.12D6 = D14.D6φ: trivial image1684+Dic7.12D6336,146

׿
x
:
Z
F
o
wr
Q
<