Extensions 1→N→G→Q→1 with N=Dic7 and Q=D6

Direct product G=N×Q with N=Dic7 and Q=D6
dρLabelID
C2×S3×Dic7168C2xS3xDic7336,154

Semidirect products G=N:Q with N=Dic7 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic71D6 = S3×C7⋊D4φ: D6/S3C2 ⊆ Out Dic7844Dic7:1D6336,162
Dic72D6 = D6⋊D14φ: D6/S3C2 ⊆ Out Dic7844+Dic7:2D6336,163
Dic73D6 = D7×D12φ: D6/C6C2 ⊆ Out Dic7844+Dic7:3D6336,148
Dic74D6 = C2×C7⋊D12φ: D6/C6C2 ⊆ Out Dic7168Dic7:4D6336,159
Dic75D6 = C4×S3×D7φ: trivial image844Dic7:5D6336,147
Dic76D6 = C2×D21⋊C4φ: trivial image168Dic7:6D6336,156

Non-split extensions G=N.Q with N=Dic7 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic7.1D6 = S3×Dic14φ: D6/S3C2 ⊆ Out Dic71684-Dic7.1D6336,140
Dic7.2D6 = D12⋊D7φ: D6/S3C2 ⊆ Out Dic71684Dic7.2D6336,141
Dic7.3D6 = D84⋊C2φ: D6/S3C2 ⊆ Out Dic71684+Dic7.3D6336,142
Dic7.4D6 = D21⋊Q8φ: D6/S3C2 ⊆ Out Dic71684Dic7.4D6336,143
Dic7.5D6 = Dic7.D6φ: D6/S3C2 ⊆ Out Dic71684Dic7.5D6336,152
Dic7.6D6 = C42.C23φ: D6/S3C2 ⊆ Out Dic71684-Dic7.6D6336,153
Dic7.7D6 = D7×Dic6φ: D6/C6C2 ⊆ Out Dic71684-Dic7.7D6336,137
Dic7.8D6 = D6.D14φ: D6/C6C2 ⊆ Out Dic71684Dic7.8D6336,144
Dic7.9D6 = Dic3.D14φ: D6/C6C2 ⊆ Out Dic71684Dic7.9D6336,155
Dic7.10D6 = C2×C21⋊Q8φ: D6/C6C2 ⊆ Out Dic7336Dic7.10D6336,160
Dic7.11D6 = D125D7φ: trivial image1684-Dic7.11D6336,145
Dic7.12D6 = D14.D6φ: trivial image1684+Dic7.12D6336,146

׿
×
𝔽