Copied to
clipboard

G = C44.D4order 352 = 25·11

8th non-split extension by C44 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C44.8D4, C23.Dic11, (C2×C4).3D22, (C2×D4).2D11, (D4×C22).2C2, C44.C43C2, C112(C4.D4), (C22×C22).2C4, C4.13(C11⋊D4), (C2×C44).17C22, C22.14(C22⋊C4), C2.4(C23.D11), C22.2(C2×Dic11), (C2×C22).28(C2×C4), SmallGroup(352,39)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C44.D4
C1C11C22C44C2×C44C44.C4 — C44.D4
C11C22C2×C22 — C44.D4
C1C2C2×C4C2×D4

Generators and relations for C44.D4
 G = < a,b,c | a44=1, b4=a22, c2=a33, bab-1=a-1, cac-1=a21, cbc-1=a11b3 >

2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C22
4C22
4C22
2D4
2D4
22C8
22C8
2C2×C22
2C2×C22
4C2×C22
4C2×C22
11M4(2)
11M4(2)
2D4×C11
2C11⋊C8
2C11⋊C8
2D4×C11
11C4.D4

Smallest permutation representation of C44.D4
On 88 points
Generators in S88
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 52 34 63 23 74 12 85)(2 51 35 62 24 73 13 84)(3 50 36 61 25 72 14 83)(4 49 37 60 26 71 15 82)(5 48 38 59 27 70 16 81)(6 47 39 58 28 69 17 80)(7 46 40 57 29 68 18 79)(8 45 41 56 30 67 19 78)(9 88 42 55 31 66 20 77)(10 87 43 54 32 65 21 76)(11 86 44 53 33 64 22 75)
(1 74 34 63 23 52 12 85)(2 51 35 84 24 73 13 62)(3 72 36 61 25 50 14 83)(4 49 37 82 26 71 15 60)(5 70 38 59 27 48 16 81)(6 47 39 80 28 69 17 58)(7 68 40 57 29 46 18 79)(8 45 41 78 30 67 19 56)(9 66 42 55 31 88 20 77)(10 87 43 76 32 65 21 54)(11 64 44 53 33 86 22 75)

G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,52,34,63,23,74,12,85)(2,51,35,62,24,73,13,84)(3,50,36,61,25,72,14,83)(4,49,37,60,26,71,15,82)(5,48,38,59,27,70,16,81)(6,47,39,58,28,69,17,80)(7,46,40,57,29,68,18,79)(8,45,41,56,30,67,19,78)(9,88,42,55,31,66,20,77)(10,87,43,54,32,65,21,76)(11,86,44,53,33,64,22,75), (1,74,34,63,23,52,12,85)(2,51,35,84,24,73,13,62)(3,72,36,61,25,50,14,83)(4,49,37,82,26,71,15,60)(5,70,38,59,27,48,16,81)(6,47,39,80,28,69,17,58)(7,68,40,57,29,46,18,79)(8,45,41,78,30,67,19,56)(9,66,42,55,31,88,20,77)(10,87,43,76,32,65,21,54)(11,64,44,53,33,86,22,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,52,34,63,23,74,12,85)(2,51,35,62,24,73,13,84)(3,50,36,61,25,72,14,83)(4,49,37,60,26,71,15,82)(5,48,38,59,27,70,16,81)(6,47,39,58,28,69,17,80)(7,46,40,57,29,68,18,79)(8,45,41,56,30,67,19,78)(9,88,42,55,31,66,20,77)(10,87,43,54,32,65,21,76)(11,86,44,53,33,64,22,75), (1,74,34,63,23,52,12,85)(2,51,35,84,24,73,13,62)(3,72,36,61,25,50,14,83)(4,49,37,82,26,71,15,60)(5,70,38,59,27,48,16,81)(6,47,39,80,28,69,17,58)(7,68,40,57,29,46,18,79)(8,45,41,78,30,67,19,56)(9,66,42,55,31,88,20,77)(10,87,43,76,32,65,21,54)(11,64,44,53,33,86,22,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,52,34,63,23,74,12,85),(2,51,35,62,24,73,13,84),(3,50,36,61,25,72,14,83),(4,49,37,60,26,71,15,82),(5,48,38,59,27,70,16,81),(6,47,39,58,28,69,17,80),(7,46,40,57,29,68,18,79),(8,45,41,56,30,67,19,78),(9,88,42,55,31,66,20,77),(10,87,43,54,32,65,21,76),(11,86,44,53,33,64,22,75)], [(1,74,34,63,23,52,12,85),(2,51,35,84,24,73,13,62),(3,72,36,61,25,50,14,83),(4,49,37,82,26,71,15,60),(5,70,38,59,27,48,16,81),(6,47,39,80,28,69,17,58),(7,68,40,57,29,46,18,79),(8,45,41,78,30,67,19,56),(9,66,42,55,31,88,20,77),(10,87,43,76,32,65,21,54),(11,64,44,53,33,86,22,75)]])

61 conjugacy classes

class 1 2A2B2C2D4A4B8A8B8C8D11A···11E22A···22O22P···22AI44A···44J
order1222244888811···1122···2222···2244···44
size1124422444444442···22···24···44···4

61 irreducible representations

dim11112222244
type++++++-+
imageC1C2C2C4D4D11D22Dic11C11⋊D4C4.D4C44.D4
kernelC44.D4C44.C4D4×C22C22×C22C44C2×D4C2×C4C23C4C11C1
# reps12142551020110

Matrix representation of C44.D4 in GL4(𝔽89) generated by

164400
457300
3873930
12394150
,
6128180
77228446
79751657
80326379
,
6128180
079043
1162832
768010
G:=sub<GL(4,GF(89))| [16,45,3,12,44,73,87,39,0,0,39,41,0,0,30,50],[61,77,79,80,28,22,75,32,18,84,16,63,0,46,57,79],[61,0,1,76,28,79,16,8,18,0,28,0,0,43,32,10] >;

C44.D4 in GAP, Magma, Sage, TeX

C_{44}.D_4
% in TeX

G:=Group("C44.D4");
// GroupNames label

G:=SmallGroup(352,39);
// by ID

G=gap.SmallGroup(352,39);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,24,121,188,86,579,11525]);
// Polycyclic

G:=Group<a,b,c|a^44=1,b^4=a^22,c^2=a^33,b*a*b^-1=a^-1,c*a*c^-1=a^21,c*b*c^-1=a^11*b^3>;
// generators/relations

Export

Subgroup lattice of C44.D4 in TeX

׿
×
𝔽