extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D22 = C44.46D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 88 | 4+ | (C2xC4).1D22 | 352,29 |
(C2×C4).2D22 = C44.47D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4- | (C2xC4).2D22 | 352,30 |
(C2×C4).3D22 = C44.D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 88 | 4 | (C2xC4).3D22 | 352,39 |
(C2×C4).4D22 = C44.10D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).4D22 | 352,42 |
(C2×C4).5D22 = C22⋊Dic22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).5D22 | 352,73 |
(C2×C4).6D22 = D22.D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).6D22 | 352,78 |
(C2×C4).7D22 = D22⋊D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).7D22 | 352,79 |
(C2×C4).8D22 = Dic11.D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).8D22 | 352,80 |
(C2×C4).9D22 = C22.D44 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).9D22 | 352,81 |
(C2×C4).10D22 = Dic11.Q8 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 352 | | (C2xC4).10D22 | 352,84 |
(C2×C4).11D22 = D22.5D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).11D22 | 352,89 |
(C2×C4).12D22 = C4⋊2D44 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).12D22 | 352,90 |
(C2×C4).13D22 = D22⋊Q8 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).13D22 | 352,91 |
(C2×C4).14D22 = D22⋊2Q8 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).14D22 | 352,92 |
(C2×C4).15D22 = C8⋊D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 88 | 4+ | (C2xC4).15D22 | 352,103 |
(C2×C4).16D22 = C8.D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4- | (C2xC4).16D22 | 352,104 |
(C2×C4).17D22 = D44⋊6C22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 88 | 4 | (C2xC4).17D22 | 352,127 |
(C2×C4).18D22 = C23.18D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).18D22 | 352,130 |
(C2×C4).19D22 = Dic11⋊D4 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).19D22 | 352,134 |
(C2×C4).20D22 = C44.C23 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).20D22 | 352,137 |
(C2×C4).21D22 = D22⋊3Q8 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | | (C2xC4).21D22 | 352,141 |
(C2×C4).22D22 = Q8⋊D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 88 | 4+ | (C2xC4).22D22 | 352,144 |
(C2×C4).23D22 = D4.9D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4- | (C2xC4).23D22 | 352,146 |
(C2×C4).24D22 = Q8.10D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).24D22 | 352,182 |
(C2×C4).25D22 = D4.10D22 | φ: D22/C11 → C22 ⊆ Aut C2×C4 | 176 | 4- | (C2xC4).25D22 | 352,185 |
(C2×C4).26D22 = C23.11D22 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).26D22 | 352,72 |
(C2×C4).27D22 = C23.D22 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).27D22 | 352,74 |
(C2×C4).28D22 = Dic11⋊4D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).28D22 | 352,76 |
(C2×C4).29D22 = Dic22⋊C4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).29D22 | 352,82 |
(C2×C4).30D22 = C4⋊C4×D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).30D22 | 352,86 |
(C2×C4).31D22 = D44⋊C4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).31D22 | 352,88 |
(C2×C4).32D22 = C4⋊C4⋊D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).32D22 | 352,93 |
(C2×C4).33D22 = C44.Q8 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).33D22 | 352,13 |
(C2×C4).34D22 = C4.Dic22 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).34D22 | 352,14 |
(C2×C4).35D22 = C22.D8 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).35D22 | 352,15 |
(C2×C4).36D22 = C22.Q16 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).36D22 | 352,16 |
(C2×C4).37D22 = C44.53D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).37D22 | 352,28 |
(C2×C4).38D22 = D44⋊4C4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 88 | 4 | (C2xC4).38D22 | 352,31 |
(C2×C4).39D22 = D4⋊Dic11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).39D22 | 352,38 |
(C2×C4).40D22 = Q8⋊Dic11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).40D22 | 352,41 |
(C2×C4).41D22 = C44.56D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 88 | 4 | (C2xC4).41D22 | 352,43 |
(C2×C4).42D22 = C44⋊Q8 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).42D22 | 352,83 |
(C2×C4).43D22 = C44.3Q8 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).43D22 | 352,85 |
(C2×C4).44D22 = C4⋊C4⋊7D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).44D22 | 352,87 |
(C2×C4).45D22 = M4(2)×D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 88 | 4 | (C2xC4).45D22 | 352,101 |
(C2×C4).46D22 = D44.C4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).46D22 | 352,102 |
(C2×C4).47D22 = C2×D4⋊D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).47D22 | 352,126 |
(C2×C4).48D22 = C2×D4.D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).48D22 | 352,128 |
(C2×C4).49D22 = D4×Dic11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).49D22 | 352,129 |
(C2×C4).50D22 = C44.17D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).50D22 | 352,131 |
(C2×C4).51D22 = C44⋊2D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).51D22 | 352,133 |
(C2×C4).52D22 = C44⋊D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).52D22 | 352,135 |
(C2×C4).53D22 = C2×Q8⋊D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).53D22 | 352,136 |
(C2×C4).54D22 = C2×C11⋊Q16 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).54D22 | 352,138 |
(C2×C4).55D22 = Dic11⋊Q8 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).55D22 | 352,139 |
(C2×C4).56D22 = Q8×Dic11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).56D22 | 352,140 |
(C2×C4).57D22 = C44.23D4 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).57D22 | 352,142 |
(C2×C4).58D22 = Q8.Dic11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).58D22 | 352,143 |
(C2×C4).59D22 = D4.8D22 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | 4 | (C2xC4).59D22 | 352,145 |
(C2×C4).60D22 = C2×D4⋊2D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).60D22 | 352,178 |
(C2×C4).61D22 = C2×Q8×D11 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).61D22 | 352,180 |
(C2×C4).62D22 = C2×D44⋊C2 | φ: D22/D11 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).62D22 | 352,181 |
(C2×C4).63D22 = C42⋊2D11 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).63D22 | 352,71 |
(C2×C4).64D22 = C2×Dic11⋊C4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).64D22 | 352,118 |
(C2×C4).65D22 = C23.23D22 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).65D22 | 352,124 |
(C2×C4).66D22 = D44⋊1C4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 88 | 2 | (C2xC4).66D22 | 352,11 |
(C2×C4).67D22 = C44.44D4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).67D22 | 352,22 |
(C2×C4).68D22 = C44.4Q8 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).68D22 | 352,23 |
(C2×C4).69D22 = C44.5Q8 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).69D22 | 352,24 |
(C2×C4).70D22 = C88.C4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | 2 | (C2xC4).70D22 | 352,25 |
(C2×C4).71D22 = C2.D88 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).71D22 | 352,27 |
(C2×C4).72D22 = C4×Dic22 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).72D22 | 352,63 |
(C2×C4).73D22 = C44⋊2Q8 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).73D22 | 352,64 |
(C2×C4).74D22 = C44.6Q8 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).74D22 | 352,65 |
(C2×C4).75D22 = C4×D44 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).75D22 | 352,68 |
(C2×C4).76D22 = C4⋊D44 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).76D22 | 352,69 |
(C2×C4).77D22 = C4.D44 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).77D22 | 352,70 |
(C2×C4).78D22 = D44.2C4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | 2 | (C2xC4).78D22 | 352,96 |
(C2×C4).79D22 = C2×C8⋊D11 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).79D22 | 352,97 |
(C2×C4).80D22 = C2×D88 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).80D22 | 352,98 |
(C2×C4).81D22 = D88⋊7C2 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | 2 | (C2xC4).81D22 | 352,99 |
(C2×C4).82D22 = C2×Dic44 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).82D22 | 352,100 |
(C2×C4).83D22 = C44.48D4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).83D22 | 352,119 |
(C2×C4).84D22 = C2×C44⋊C4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).84D22 | 352,120 |
(C2×C4).85D22 = C44⋊7D4 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 176 | | (C2xC4).85D22 | 352,125 |
(C2×C4).86D22 = C22×Dic22 | φ: D22/C22 → C2 ⊆ Aut C2×C4 | 352 | | (C2xC4).86D22 | 352,173 |
(C2×C4).87D22 = C4×C11⋊C8 | central extension (φ=1) | 352 | | (C2xC4).87D22 | 352,8 |
(C2×C4).88D22 = C42.D11 | central extension (φ=1) | 352 | | (C2xC4).88D22 | 352,9 |
(C2×C4).89D22 = C44⋊C8 | central extension (φ=1) | 352 | | (C2xC4).89D22 | 352,10 |
(C2×C4).90D22 = C8×Dic11 | central extension (φ=1) | 352 | | (C2xC4).90D22 | 352,19 |
(C2×C4).91D22 = Dic11⋊C8 | central extension (φ=1) | 352 | | (C2xC4).91D22 | 352,20 |
(C2×C4).92D22 = C88⋊C4 | central extension (φ=1) | 352 | | (C2xC4).92D22 | 352,21 |
(C2×C4).93D22 = D22⋊C8 | central extension (φ=1) | 176 | | (C2xC4).93D22 | 352,26 |
(C2×C4).94D22 = C44.55D4 | central extension (φ=1) | 176 | | (C2xC4).94D22 | 352,36 |
(C2×C4).95D22 = C42×D11 | central extension (φ=1) | 176 | | (C2xC4).95D22 | 352,66 |
(C2×C4).96D22 = C42⋊D11 | central extension (φ=1) | 176 | | (C2xC4).96D22 | 352,67 |
(C2×C4).97D22 = C2×C8×D11 | central extension (φ=1) | 176 | | (C2xC4).97D22 | 352,94 |
(C2×C4).98D22 = C2×C88⋊C2 | central extension (φ=1) | 176 | | (C2xC4).98D22 | 352,95 |
(C2×C4).99D22 = C22×C11⋊C8 | central extension (φ=1) | 352 | | (C2xC4).99D22 | 352,115 |
(C2×C4).100D22 = C2×C44.C4 | central extension (φ=1) | 176 | | (C2xC4).100D22 | 352,116 |
(C2×C4).101D22 = C2×C4×Dic11 | central extension (φ=1) | 352 | | (C2xC4).101D22 | 352,117 |
(C2×C4).102D22 = C23.21D22 | central extension (φ=1) | 176 | | (C2xC4).102D22 | 352,121 |
(C2×C4).103D22 = C4×C11⋊D4 | central extension (φ=1) | 176 | | (C2xC4).103D22 | 352,123 |