direct product, non-abelian, soluble, monomial
Aliases: C5×S3≀C2, S32⋊C10, C32⋊(C5×D4), C32⋊C4⋊C10, (C3×C15)⋊3D4, (C5×S32)⋊2C2, (C5×C32⋊C4)⋊3C2, C3⋊S3.1(C2×C10), (C5×C3⋊S3).4C22, SmallGroup(360,132)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C5×S3≀C2 |
C1 — C32 — C3⋊S3 — C5×C3⋊S3 — C5×S32 — C5×S3≀C2 |
C32 — C3⋊S3 — C5×S3≀C2 |
Generators and relations for C5×S3≀C2
G = < a,b,c,d,e | a5=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=d-1 >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(6 29 15)(7 30 11)(8 26 12)(9 27 13)(10 28 14)
(1 23 17)(2 24 18)(3 25 19)(4 21 20)(5 22 16)
(1 8)(2 9)(3 10)(4 6)(5 7)(11 22 30 16)(12 23 26 17)(13 24 27 18)(14 25 28 19)(15 21 29 20)
(11 30)(12 26)(13 27)(14 28)(15 29)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (6,29,15)(7,30,11)(8,26,12)(9,27,13)(10,28,14), (1,23,17)(2,24,18)(3,25,19)(4,21,20)(5,22,16), (1,8)(2,9)(3,10)(4,6)(5,7)(11,22,30,16)(12,23,26,17)(13,24,27,18)(14,25,28,19)(15,21,29,20), (11,30)(12,26)(13,27)(14,28)(15,29)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (6,29,15)(7,30,11)(8,26,12)(9,27,13)(10,28,14), (1,23,17)(2,24,18)(3,25,19)(4,21,20)(5,22,16), (1,8)(2,9)(3,10)(4,6)(5,7)(11,22,30,16)(12,23,26,17)(13,24,27,18)(14,25,28,19)(15,21,29,20), (11,30)(12,26)(13,27)(14,28)(15,29) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(6,29,15),(7,30,11),(8,26,12),(9,27,13),(10,28,14)], [(1,23,17),(2,24,18),(3,25,19),(4,21,20),(5,22,16)], [(1,8),(2,9),(3,10),(4,6),(5,7),(11,22,30,16),(12,23,26,17),(13,24,27,18),(14,25,28,19),(15,21,29,20)], [(11,30),(12,26),(13,27),(14,28),(15,29)]])
G:=TransitiveGroup(30,82);
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 5A | 5B | 5C | 5D | 6A | 6B | 10A | ··· | 10H | 10I | 10J | 10K | 10L | 15A | ··· | 15H | 20A | 20B | 20C | 20D | 30A | ··· | 30H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 |
size | 1 | 6 | 6 | 9 | 4 | 4 | 18 | 1 | 1 | 1 | 1 | 12 | 12 | 6 | ··· | 6 | 9 | 9 | 9 | 9 | 4 | ··· | 4 | 18 | 18 | 18 | 18 | 12 | ··· | 12 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C5 | C10 | C10 | D4 | C5×D4 | S3≀C2 | C5×S3≀C2 |
kernel | C5×S3≀C2 | C5×C32⋊C4 | C5×S32 | S3≀C2 | C32⋊C4 | S32 | C3×C15 | C32 | C5 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 8 | 1 | 4 | 4 | 16 |
Matrix representation of C5×S3≀C2 ►in GL6(𝔽61)
58 | 0 | 0 | 0 | 0 | 0 |
0 | 58 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 60 | 0 | 60 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 |
0 | 0 | 60 | 0 | 60 | 60 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 60 | 60 | 59 | 60 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 60 | 60 | 59 | 60 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
G:=sub<GL(6,GF(61))| [58,0,0,0,0,0,0,58,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,60,0,0,60,60,1,0,0,0,0,0,0,60,0,0,0,0,1,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,0,0,0,60,60,0,1,0,0,0,0,60,1,0,0,0,0,60,0],[0,1,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,60,0,1,0,0,60,59,1,1,0,0,1,60,0,0],[0,60,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,1,0,0,0,60,0,0,0,0,60,59,1,1,0,0,1,60,0,0] >;
C5×S3≀C2 in GAP, Magma, Sage, TeX
C_5\times S_3\wr C_2
% in TeX
G:=Group("C5xS3wrC2");
// GroupNames label
G:=SmallGroup(360,132);
// by ID
G=gap.SmallGroup(360,132);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-3,3,265,2404,1810,142,731,455]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export