Copied to
clipboard

G = D9×D11order 396 = 22·32·11

Direct product of D9 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D9×D11, D99⋊C2, C91D22, C99⋊C22, C33.D6, C111D18, (C9×D11)⋊C2, (C11×D9)⋊C2, C3.(S3×D11), (C3×D11).S3, SmallGroup(396,5)

Series: Derived Chief Lower central Upper central

C1C99 — D9×D11
C1C3C33C99C9×D11 — D9×D11
C99 — D9×D11
C1

Generators and relations for D9×D11
 G = < a,b,c,d | a9=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

9C2
11C2
99C2
99C22
3S3
11C6
33S3
9C22
9D11
33D6
11C18
11D9
9D22
3S3×C11
3D33
11D18
3S3×D11

Smallest permutation representation of D9×D11
On 99 points
Generators in S99
(1 91 58 35 30 86 53 18 68)(2 92 59 36 31 87 54 19 69)(3 93 60 37 32 88 55 20 70)(4 94 61 38 33 78 45 21 71)(5 95 62 39 23 79 46 22 72)(6 96 63 40 24 80 47 12 73)(7 97 64 41 25 81 48 13 74)(8 98 65 42 26 82 49 14 75)(9 99 66 43 27 83 50 15 76)(10 89 56 44 28 84 51 16 77)(11 90 57 34 29 85 52 17 67)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 67)(12 96)(13 97)(14 98)(15 99)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(34 85)(35 86)(36 87)(37 88)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)
(1 11)(2 10)(3 9)(4 8)(5 7)(13 22)(14 21)(15 20)(16 19)(17 18)(23 25)(26 33)(27 32)(28 31)(29 30)(34 35)(36 44)(37 43)(38 42)(39 41)(45 49)(46 48)(50 55)(51 54)(52 53)(56 59)(57 58)(60 66)(61 65)(62 64)(67 68)(69 77)(70 76)(71 75)(72 74)(78 82)(79 81)(83 88)(84 87)(85 86)(89 92)(90 91)(93 99)(94 98)(95 97)

G:=sub<Sym(99)| (1,91,58,35,30,86,53,18,68)(2,92,59,36,31,87,54,19,69)(3,93,60,37,32,88,55,20,70)(4,94,61,38,33,78,45,21,71)(5,95,62,39,23,79,46,22,72)(6,96,63,40,24,80,47,12,73)(7,97,64,41,25,81,48,13,74)(8,98,65,42,26,82,49,14,75)(9,99,66,43,27,83,50,15,76)(10,89,56,44,28,84,51,16,77)(11,90,57,34,29,85,52,17,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,67)(12,96)(13,97)(14,98)(15,99)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(34,85)(35,86)(36,87)(37,88)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,25)(26,33)(27,32)(28,31)(29,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,49)(46,48)(50,55)(51,54)(52,53)(56,59)(57,58)(60,66)(61,65)(62,64)(67,68)(69,77)(70,76)(71,75)(72,74)(78,82)(79,81)(83,88)(84,87)(85,86)(89,92)(90,91)(93,99)(94,98)(95,97)>;

G:=Group( (1,91,58,35,30,86,53,18,68)(2,92,59,36,31,87,54,19,69)(3,93,60,37,32,88,55,20,70)(4,94,61,38,33,78,45,21,71)(5,95,62,39,23,79,46,22,72)(6,96,63,40,24,80,47,12,73)(7,97,64,41,25,81,48,13,74)(8,98,65,42,26,82,49,14,75)(9,99,66,43,27,83,50,15,76)(10,89,56,44,28,84,51,16,77)(11,90,57,34,29,85,52,17,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,67)(12,96)(13,97)(14,98)(15,99)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(34,85)(35,86)(36,87)(37,88)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,25)(26,33)(27,32)(28,31)(29,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,49)(46,48)(50,55)(51,54)(52,53)(56,59)(57,58)(60,66)(61,65)(62,64)(67,68)(69,77)(70,76)(71,75)(72,74)(78,82)(79,81)(83,88)(84,87)(85,86)(89,92)(90,91)(93,99)(94,98)(95,97) );

G=PermutationGroup([[(1,91,58,35,30,86,53,18,68),(2,92,59,36,31,87,54,19,69),(3,93,60,37,32,88,55,20,70),(4,94,61,38,33,78,45,21,71),(5,95,62,39,23,79,46,22,72),(6,96,63,40,24,80,47,12,73),(7,97,64,41,25,81,48,13,74),(8,98,65,42,26,82,49,14,75),(9,99,66,43,27,83,50,15,76),(10,89,56,44,28,84,51,16,77),(11,90,57,34,29,85,52,17,67)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,67),(12,96),(13,97),(14,98),(15,99),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(34,85),(35,86),(36,87),(37,88),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99)], [(1,11),(2,10),(3,9),(4,8),(5,7),(13,22),(14,21),(15,20),(16,19),(17,18),(23,25),(26,33),(27,32),(28,31),(29,30),(34,35),(36,44),(37,43),(38,42),(39,41),(45,49),(46,48),(50,55),(51,54),(52,53),(56,59),(57,58),(60,66),(61,65),(62,64),(67,68),(69,77),(70,76),(71,75),(72,74),(78,82),(79,81),(83,88),(84,87),(85,86),(89,92),(90,91),(93,99),(94,98),(95,97)]])

42 conjugacy classes

class 1 2A2B2C 3  6 9A9B9C11A···11E18A18B18C22A···22E33A···33E99A···99O
order12223699911···1118181822···2233···3399···99
size1911992222222···222222218···184···44···4

42 irreducible representations

dim111122222244
type++++++++++++
imageC1C2C2C2S3D6D9D11D18D22S3×D11D9×D11
kernelD9×D11C11×D9C9×D11D99C3×D11C33D11D9C11C9C3C1
# reps1111113535515

Matrix representation of D9×D11 in GL4(𝔽199) generated by

5710800
9114800
0010
0001
,
5710800
5114200
0010
0001
,
1000
0100
0001
001983
,
1000
0100
0001
0010
G:=sub<GL(4,GF(199))| [57,91,0,0,108,148,0,0,0,0,1,0,0,0,0,1],[57,51,0,0,108,142,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,198,0,0,1,3],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;

D9×D11 in GAP, Magma, Sage, TeX

D_9\times D_{11}
% in TeX

G:=Group("D9xD11");
// GroupNames label

G:=SmallGroup(396,5);
// by ID

G=gap.SmallGroup(396,5);
# by ID

G:=PCGroup([5,-2,-2,-3,-11,-3,1057,1002,2403,3309]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D9×D11 in TeX

׿
×
𝔽