Copied to
clipboard

G = D4×C2×C20order 320 = 26·5

Direct product of C2×C20 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C2×C20, C41(C22×C20), (C23×C20)⋊6C2, C234(C2×C20), (C23×C4)⋊3C10, (C2×C42)⋊7C10, C2010(C22×C4), C4216(C2×C10), (C4×C20)⋊57C22, C2.4(C23×C20), C24.30(C2×C10), C10.77(C23×C4), C221(C22×C20), C22.59(D4×C10), (C2×C10).335C24, (C2×C20).707C23, (C22×C20)⋊58C22, (C22×D4).13C10, C10.179(C22×D4), C22.8(C23×C10), (D4×C10).330C22, C23.28(C22×C10), (C23×C10).90C22, (C22×C10).252C23, (C2×C4×C20)⋊20C2, C2.3(D4×C2×C10), (C2×C4)⋊7(C2×C20), (C2×C4⋊C4)⋊25C10, (C10×C4⋊C4)⋊52C2, C4⋊C419(C2×C10), (C2×C20)⋊45(C2×C4), (D4×C2×C10).26C2, C2.2(C10×C4○D4), (C5×C4⋊C4)⋊76C22, (C2×C10)⋊8(C22×C4), C22⋊C417(C2×C10), (C2×C22⋊C4)⋊16C10, (C10×C22⋊C4)⋊36C2, (C22×C10)⋊20(C2×C4), (C22×C4)⋊16(C2×C10), (C2×D4).76(C2×C10), C10.221(C2×C4○D4), (C2×C10).681(C2×D4), C22.27(C5×C4○D4), (C5×C22⋊C4)⋊71C22, (C2×C4).54(C22×C10), (C2×C10).227(C4○D4), SmallGroup(320,1517)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C2×C20
C1C2C22C2×C10C2×C20C5×C22⋊C4D4×C20 — D4×C2×C20
C1C2 — D4×C2×C20
C1C22×C20 — D4×C2×C20

Generators and relations for D4×C2×C20
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 578 in 426 conjugacy classes, 274 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4×D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C22×C20, D4×C10, C23×C10, C2×C4×C20, C10×C22⋊C4, C10×C4⋊C4, D4×C20, C23×C20, D4×C2×C10, D4×C2×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22×C4, C2×D4, C4○D4, C24, C20, C2×C10, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×C20, C5×D4, C22×C10, C2×C4×D4, C22×C20, D4×C10, C5×C4○D4, C23×C10, D4×C20, C23×C20, D4×C2×C10, C10×C4○D4, D4×C2×C20

Smallest permutation representation of D4×C2×C20
On 160 points
Generators in S160
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(41 155)(42 156)(43 157)(44 158)(45 159)(46 160)(47 141)(48 142)(49 143)(50 144)(51 145)(52 146)(53 147)(54 148)(55 149)(56 150)(57 151)(58 152)(59 153)(60 154)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 81)(77 82)(78 83)(79 84)(80 85)(101 139)(102 140)(103 121)(104 122)(105 123)(106 124)(107 125)(108 126)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 88 135 158)(2 89 136 159)(3 90 137 160)(4 91 138 141)(5 92 139 142)(6 93 140 143)(7 94 121 144)(8 95 122 145)(9 96 123 146)(10 97 124 147)(11 98 125 148)(12 99 126 149)(13 100 127 150)(14 81 128 151)(15 82 129 152)(16 83 130 153)(17 84 131 154)(18 85 132 155)(19 86 133 156)(20 87 134 157)(21 75 109 56)(22 76 110 57)(23 77 111 58)(24 78 112 59)(25 79 113 60)(26 80 114 41)(27 61 115 42)(28 62 116 43)(29 63 117 44)(30 64 118 45)(31 65 119 46)(32 66 120 47)(33 67 101 48)(34 68 102 49)(35 69 103 50)(36 70 104 51)(37 71 105 52)(38 72 106 53)(39 73 107 54)(40 74 108 55)
(1 117)(2 118)(3 119)(4 120)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 107)(12 108)(13 109)(14 110)(15 111)(16 112)(17 113)(18 114)(19 115)(20 116)(21 127)(22 128)(23 129)(24 130)(25 131)(26 132)(27 133)(28 134)(29 135)(30 136)(31 137)(32 138)(33 139)(34 140)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 155)(42 156)(43 157)(44 158)(45 159)(46 160)(47 141)(48 142)(49 143)(50 144)(51 145)(52 146)(53 147)(54 148)(55 149)(56 150)(57 151)(58 152)(59 153)(60 154)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 81)(77 82)(78 83)(79 84)(80 85)

G:=sub<Sym(160)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,81)(77,82)(78,83)(79,84)(80,85)(101,139)(102,140)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88,135,158)(2,89,136,159)(3,90,137,160)(4,91,138,141)(5,92,139,142)(6,93,140,143)(7,94,121,144)(8,95,122,145)(9,96,123,146)(10,97,124,147)(11,98,125,148)(12,99,126,149)(13,100,127,150)(14,81,128,151)(15,82,129,152)(16,83,130,153)(17,84,131,154)(18,85,132,155)(19,86,133,156)(20,87,134,157)(21,75,109,56)(22,76,110,57)(23,77,111,58)(24,78,112,59)(25,79,113,60)(26,80,114,41)(27,61,115,42)(28,62,116,43)(29,63,117,44)(30,64,118,45)(31,65,119,46)(32,66,120,47)(33,67,101,48)(34,68,102,49)(35,69,103,50)(36,70,104,51)(37,71,105,52)(38,72,106,53)(39,73,107,54)(40,74,108,55), (1,117)(2,118)(3,119)(4,120)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,139)(34,140)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,81)(77,82)(78,83)(79,84)(80,85)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,81)(77,82)(78,83)(79,84)(80,85)(101,139)(102,140)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88,135,158)(2,89,136,159)(3,90,137,160)(4,91,138,141)(5,92,139,142)(6,93,140,143)(7,94,121,144)(8,95,122,145)(9,96,123,146)(10,97,124,147)(11,98,125,148)(12,99,126,149)(13,100,127,150)(14,81,128,151)(15,82,129,152)(16,83,130,153)(17,84,131,154)(18,85,132,155)(19,86,133,156)(20,87,134,157)(21,75,109,56)(22,76,110,57)(23,77,111,58)(24,78,112,59)(25,79,113,60)(26,80,114,41)(27,61,115,42)(28,62,116,43)(29,63,117,44)(30,64,118,45)(31,65,119,46)(32,66,120,47)(33,67,101,48)(34,68,102,49)(35,69,103,50)(36,70,104,51)(37,71,105,52)(38,72,106,53)(39,73,107,54)(40,74,108,55), (1,117)(2,118)(3,119)(4,120)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,139)(34,140)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,81)(77,82)(78,83)(79,84)(80,85) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(41,155),(42,156),(43,157),(44,158),(45,159),(46,160),(47,141),(48,142),(49,143),(50,144),(51,145),(52,146),(53,147),(54,148),(55,149),(56,150),(57,151),(58,152),(59,153),(60,154),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,81),(77,82),(78,83),(79,84),(80,85),(101,139),(102,140),(103,121),(104,122),(105,123),(106,124),(107,125),(108,126),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,88,135,158),(2,89,136,159),(3,90,137,160),(4,91,138,141),(5,92,139,142),(6,93,140,143),(7,94,121,144),(8,95,122,145),(9,96,123,146),(10,97,124,147),(11,98,125,148),(12,99,126,149),(13,100,127,150),(14,81,128,151),(15,82,129,152),(16,83,130,153),(17,84,131,154),(18,85,132,155),(19,86,133,156),(20,87,134,157),(21,75,109,56),(22,76,110,57),(23,77,111,58),(24,78,112,59),(25,79,113,60),(26,80,114,41),(27,61,115,42),(28,62,116,43),(29,63,117,44),(30,64,118,45),(31,65,119,46),(32,66,120,47),(33,67,101,48),(34,68,102,49),(35,69,103,50),(36,70,104,51),(37,71,105,52),(38,72,106,53),(39,73,107,54),(40,74,108,55)], [(1,117),(2,118),(3,119),(4,120),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,107),(12,108),(13,109),(14,110),(15,111),(16,112),(17,113),(18,114),(19,115),(20,116),(21,127),(22,128),(23,129),(24,130),(25,131),(26,132),(27,133),(28,134),(29,135),(30,136),(31,137),(32,138),(33,139),(34,140),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,155),(42,156),(43,157),(44,158),(45,159),(46,160),(47,141),(48,142),(49,143),(50,144),(51,145),(52,146),(53,147),(54,148),(55,149),(56,150),(57,151),(58,152),(59,153),(60,154),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,81),(77,82),(78,83),(79,84),(80,85)]])

200 conjugacy classes

class 1 2A···2G2H···2O4A···4H4I···4X5A5B5C5D10A···10AB10AC···10BH20A···20AF20AG···20CR
order12···22···24···44···4555510···1010···1020···2020···20
size11···12···21···12···211111···12···21···12···2

200 irreducible representations

dim11111111111111112222
type++++++++
imageC1C2C2C2C2C2C2C4C5C10C10C10C10C10C10C20D4C4○D4C5×D4C5×C4○D4
kernelD4×C2×C20C2×C4×C20C10×C22⋊C4C10×C4⋊C4D4×C20C23×C20D4×C2×C10D4×C10C2×C4×D4C2×C42C2×C22⋊C4C2×C4⋊C4C4×D4C23×C4C22×D4C2×D4C2×C20C2×C10C2×C4C22
# reps1121821164484328464441616

Matrix representation of D4×C2×C20 in GL4(𝔽41) generated by

1000
04000
0010
0001
,
20000
0900
0020
0002
,
40000
04000
00402
00401
,
40000
0100
00400
00401
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[20,0,0,0,0,9,0,0,0,0,2,0,0,0,0,2],[40,0,0,0,0,40,0,0,0,0,40,40,0,0,2,1],[40,0,0,0,0,1,0,0,0,0,40,40,0,0,0,1] >;

D4×C2×C20 in GAP, Magma, Sage, TeX

D_4\times C_2\times C_{20}
% in TeX

G:=Group("D4xC2xC20");
// GroupNames label

G:=SmallGroup(320,1517);
// by ID

G=gap.SmallGroup(320,1517);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,856]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽