Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C4○D4

Direct product G=N×Q with N=C3×C9 and Q=C4○D4
dρLabelID
C4○D4×C3×C9216C4oD4xC3xC9432,409

Semidirect products G=N:Q with N=C3×C9 and Q=C4○D4
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1(C4○D4) = D18.D6φ: C4○D4/C4C22 ⊆ Aut C3×C9724(C3xC9):1(C4oD4)432,281
(C3×C9)⋊2(C4○D4) = Dic65D9φ: C4○D4/C4C22 ⊆ Aut C3×C9724+(C3xC9):2(C4oD4)432,282
(C3×C9)⋊3(C4○D4) = D125D9φ: C4○D4/C4C22 ⊆ Aut C3×C91444-(C3xC9):3(C4oD4)432,285
(C3×C9)⋊4(C4○D4) = D12⋊D9φ: C4○D4/C4C22 ⊆ Aut C3×C9724(C3xC9):4(C4oD4)432,286
(C3×C9)⋊5(C4○D4) = D6.D18φ: C4○D4/C4C22 ⊆ Aut C3×C9724(C3xC9):5(C4oD4)432,287
(C3×C9)⋊6(C4○D4) = D365S3φ: C4○D4/C4C22 ⊆ Aut C3×C91444-(C3xC9):6(C4oD4)432,288
(C3×C9)⋊7(C4○D4) = Dic9.D6φ: C4○D4/C4C22 ⊆ Aut C3×C9724+(C3xC9):7(C4oD4)432,289
(C3×C9)⋊8(C4○D4) = D18.3D6φ: C4○D4/C22C22 ⊆ Aut C3×C9724(C3xC9):8(C4oD4)432,305
(C3×C9)⋊9(C4○D4) = Dic3.D18φ: C4○D4/C22C22 ⊆ Aut C3×C9724(C3xC9):9(C4oD4)432,309
(C3×C9)⋊10(C4○D4) = D18.4D6φ: C4○D4/C22C22 ⊆ Aut C3×C9724-(C3xC9):10(C4oD4)432,310
(C3×C9)⋊11(C4○D4) = C9×C4○D12φ: C4○D4/C2×C4C2 ⊆ Aut C3×C9722(C3xC9):11(C4oD4)432,347
(C3×C9)⋊12(C4○D4) = C3×D365C2φ: C4○D4/C2×C4C2 ⊆ Aut C3×C9722(C3xC9):12(C4oD4)432,344
(C3×C9)⋊13(C4○D4) = C36.70D6φ: C4○D4/C2×C4C2 ⊆ Aut C3×C9216(C3xC9):13(C4oD4)432,383
(C3×C9)⋊14(C4○D4) = C9×D42S3φ: C4○D4/D4C2 ⊆ Aut C3×C9724(C3xC9):14(C4oD4)432,359
(C3×C9)⋊15(C4○D4) = C3×D42D9φ: C4○D4/D4C2 ⊆ Aut C3×C9724(C3xC9):15(C4oD4)432,357
(C3×C9)⋊16(C4○D4) = C36.27D6φ: C4○D4/D4C2 ⊆ Aut C3×C9216(C3xC9):16(C4oD4)432,389
(C3×C9)⋊17(C4○D4) = C9×Q83S3φ: C4○D4/Q8C2 ⊆ Aut C3×C91444(C3xC9):17(C4oD4)432,367
(C3×C9)⋊18(C4○D4) = C3×Q83D9φ: C4○D4/Q8C2 ⊆ Aut C3×C91444(C3xC9):18(C4oD4)432,365
(C3×C9)⋊19(C4○D4) = C36.29D6φ: C4○D4/Q8C2 ⊆ Aut C3×C9216(C3xC9):19(C4oD4)432,393


׿
×
𝔽