Extensions 1→N→G→Q→1 with N=C72 and Q=C6

Direct product G=NxQ with N=C72 and Q=C6
dρLabelID
C6xC72432C6xC72432,209

Semidirect products G=N:Q with N=C72 and Q=C6
extensionφ:Q→Aut NdρLabelID
C72:1C6 = D72:C3φ: C6/C1C6 ⊆ Aut C72726+C72:1C6432,123
C72:2C6 = C72:2C6φ: C6/C1C6 ⊆ Aut C72726C72:2C6432,122
C72:3C6 = C8xC9:C6φ: C6/C1C6 ⊆ Aut C72726C72:3C6432,120
C72:4C6 = C72:C6φ: C6/C1C6 ⊆ Aut C72726C72:4C6432,121
C72:5C6 = D8x3- 1+2φ: C6/C1C6 ⊆ Aut C72726C72:5C6432,217
C72:6C6 = SD16x3- 1+2φ: C6/C1C6 ⊆ Aut C72726C72:6C6432,220
C72:7C6 = M4(2)x3- 1+2φ: C6/C1C6 ⊆ Aut C72726C72:7C6432,214
C72:8C6 = C2xC8x3- 1+2φ: C6/C2C3 ⊆ Aut C72144C72:8C6432,211
C72:9C6 = C3xD72φ: C6/C3C2 ⊆ Aut C721442C72:9C6432,108
C72:10C6 = C3xC72:C2φ: C6/C3C2 ⊆ Aut C721442C72:10C6432,107
C72:11C6 = D9xC24φ: C6/C3C2 ⊆ Aut C721442C72:11C6432,105
C72:12C6 = C3xC8:D9φ: C6/C3C2 ⊆ Aut C721442C72:12C6432,106
C72:13C6 = D8xC3xC9φ: C6/C3C2 ⊆ Aut C72216C72:13C6432,215
C72:14C6 = SD16xC3xC9φ: C6/C3C2 ⊆ Aut C72216C72:14C6432,218
C72:15C6 = M4(2)xC3xC9φ: C6/C3C2 ⊆ Aut C72216C72:15C6432,212

Non-split extensions G=N.Q with N=C72 and Q=C6
extensionφ:Q→Aut NdρLabelID
C72.1C6 = C72.C6φ: C6/C1C6 ⊆ Aut C721446-C72.1C6432,119
C72.2C6 = C9:C48φ: C6/C1C6 ⊆ Aut C721446C72.2C6432,31
C72.3C6 = Q16x3- 1+2φ: C6/C1C6 ⊆ Aut C721446C72.3C6432,223
C72.4C6 = C16x3- 1+2φ: C6/C2C3 ⊆ Aut C721443C72.4C6432,36
C72.5C6 = C3xDic36φ: C6/C3C2 ⊆ Aut C721442C72.5C6432,104
C72.6C6 = C3xC9:C16φ: C6/C3C2 ⊆ Aut C721442C72.6C6432,28
C72.7C6 = D8xC27φ: C6/C3C2 ⊆ Aut C722162C72.7C6432,25
C72.8C6 = Q16xC27φ: C6/C3C2 ⊆ Aut C724322C72.8C6432,27
C72.9C6 = Q16xC3xC9φ: C6/C3C2 ⊆ Aut C72432C72.9C6432,221
C72.10C6 = SD16xC27φ: C6/C3C2 ⊆ Aut C722162C72.10C6432,26
C72.11C6 = M4(2)xC27φ: C6/C3C2 ⊆ Aut C722162C72.11C6432,24

׿
x
:
Z
F
o
wr
Q
<