metacyclic, supersoluble, monomial
Aliases: C72⋊2C6, D36.2C6, Dic18⋊4C6, 3- 1+2⋊1SD16, C72⋊C2⋊C3, C8⋊2(C9⋊C6), C36.9(C2×C6), (C3×C24).5S3, C9⋊1(C3×SD16), C18.2(C3×D4), C6.8(C3×D12), C12.71(S3×C6), C24.10(C3×S3), D36⋊C3.2C2, (C3×C6).17D12, (C3×C12).44D6, C36.C6⋊4C2, C2.4(D36⋊C3), C32.(C24⋊C2), (C8×3- 1+2)⋊2C2, (C2×3- 1+2).2D4, (C4×3- 1+2).9C22, C4.9(C2×C9⋊C6), C3.3(C3×C24⋊C2), SmallGroup(432,122)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C36 — C4×3- 1+2 — D36⋊C3 — C72⋊2C6 |
Generators and relations for C72⋊2C6
G = < a,b | a72=b6=1, bab-1=a11 >
Subgroups: 326 in 64 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, SD16, D9, C18, C18, C3×S3, C3×C6, C24, C24, Dic6, D12, C3×D4, C3×Q8, 3- 1+2, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, C24⋊C2, C3×SD16, C9⋊C6, C2×3- 1+2, C72, C72, Dic18, D36, C3×C24, C3×Dic6, C3×D12, C9⋊C12, C4×3- 1+2, C2×C9⋊C6, C72⋊C2, C3×C24⋊C2, C8×3- 1+2, C36.C6, D36⋊C3, C72⋊2C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, D12, C3×D4, S3×C6, C24⋊C2, C3×SD16, C9⋊C6, C3×D12, C2×C9⋊C6, C3×C24⋊C2, D36⋊C3, C72⋊2C6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 60 26 36 50 12)(3 47 51 71 27 23)(4 34)(5 21 29 69 53 45)(6 8 54 32 30 56)(7 67)(9 41 57 65 33 17)(10 28)(11 15 35 63 59 39)(13 61)(14 48 38 24 62 72)(16 22)(18 68 66 20 42 44)(19 55)(25 49)(31 43)(40 70)(46 64)(52 58)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,60,26,36,50,12)(3,47,51,71,27,23)(4,34)(5,21,29,69,53,45)(6,8,54,32,30,56)(7,67)(9,41,57,65,33,17)(10,28)(11,15,35,63,59,39)(13,61)(14,48,38,24,62,72)(16,22)(18,68,66,20,42,44)(19,55)(25,49)(31,43)(40,70)(46,64)(52,58)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,60,26,36,50,12)(3,47,51,71,27,23)(4,34)(5,21,29,69,53,45)(6,8,54,32,30,56)(7,67)(9,41,57,65,33,17)(10,28)(11,15,35,63,59,39)(13,61)(14,48,38,24,62,72)(16,22)(18,68,66,20,42,44)(19,55)(25,49)(31,43)(40,70)(46,64)(52,58) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,60,26,36,50,12),(3,47,51,71,27,23),(4,34),(5,21,29,69,53,45),(6,8,54,32,30,56),(7,67),(9,41,57,65,33,17),(10,28),(11,15,35,63,59,39),(13,61),(14,48,38,24,62,72),(16,22),(18,68,66,20,42,44),(19,55),(25,49),(31,43),(40,70),(46,64),(52,58)]])
53 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 12E | 12F | 18A | 18B | 18C | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 36 | 2 | 3 | 3 | 2 | 36 | 2 | 3 | 3 | 36 | 36 | 2 | 2 | 6 | 6 | 6 | 2 | 2 | 6 | 6 | 36 | 36 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D6 | SD16 | C3×S3 | C3×D4 | D12 | S3×C6 | C3×SD16 | C24⋊C2 | C3×D12 | C3×C24⋊C2 | C9⋊C6 | C2×C9⋊C6 | D36⋊C3 | C72⋊2C6 |
kernel | C72⋊2C6 | C8×3- 1+2 | C36.C6 | D36⋊C3 | C72⋊C2 | C72 | Dic18 | D36 | C3×C24 | C2×3- 1+2 | C3×C12 | 3- 1+2 | C24 | C18 | C3×C6 | C12 | C9 | C32 | C6 | C3 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 4 |
Matrix representation of C72⋊2C6 ►in GL8(𝔽73)
11 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 |
0 | 0 | 0 | 0 | 0 | 0 | 59 | 66 |
0 | 0 | 7 | 66 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 66 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 14 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(8,GF(73))| [11,48,0,0,0,0,0,0,25,36,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,66,14,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,66,14,0,0,7,59,0,0,0,0,0,0,14,66,0,0,0,0],[0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0] >;
C72⋊2C6 in GAP, Magma, Sage, TeX
C_{72}\rtimes_2C_6
% in TeX
G:=Group("C72:2C6");
// GroupNames label
G:=SmallGroup(432,122);
// by ID
G=gap.SmallGroup(432,122);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,92,1011,80,10085,2035,292,14118]);
// Polycyclic
G:=Group<a,b|a^72=b^6=1,b*a*b^-1=a^11>;
// generators/relations