Copied to
clipboard

G = D72⋊C3order 432 = 24·33

The semidirect product of D72 and C3 acting faithfully

metacyclic, supersoluble, monomial

Aliases: D72⋊C3, C721C6, D364C6, C32.D24, 3- 1+21D8, C91(C3×D8), C81(C9⋊C6), D36⋊C34C2, C24.6(C3×S3), (C3×C24).3S3, C18.3(C3×D4), C3.3(C3×D24), C6.9(C3×D12), C12.72(S3×C6), C36.10(C2×C6), (C3×C12).45D6, (C3×C6).18D12, C2.5(D36⋊C3), (C8×3- 1+2)⋊1C2, (C2×3- 1+2).3D4, (C4×3- 1+2).10C22, C4.10(C2×C9⋊C6), SmallGroup(432,123)

Series: Derived Chief Lower central Upper central

C1C36 — D72⋊C3
C1C3C9C18C36C4×3- 1+2D36⋊C3 — D72⋊C3
C9C18C36 — D72⋊C3
C1C2C4C8

Generators and relations for D72⋊C3
 G = < a,b,c | a72=b2=c3=1, bab=a-1, cac-1=a49, cbc-1=a48b >

Subgroups: 430 in 70 conjugacy classes, 26 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C9, C9, C32, C12, C12, D6, C2×C6, D8, D9, C18, C18, C3×S3, C3×C6, C24, C24, D12, C3×D4, 3- 1+2, C36, C36, D18, C3×C12, S3×C6, D24, C3×D8, C9⋊C6, C2×3- 1+2, C72, C72, D36, C3×C24, C3×D12, C4×3- 1+2, C2×C9⋊C6, D72, C3×D24, C8×3- 1+2, D36⋊C3, D72⋊C3
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, D12, C3×D4, S3×C6, D24, C3×D8, C9⋊C6, C3×D12, C2×C9⋊C6, C3×D24, D36⋊C3, D72⋊C3

Smallest permutation representation of D72⋊C3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(64 72)(65 71)(66 70)(67 69)
(2 26 50)(3 51 27)(5 29 53)(6 54 30)(8 32 56)(9 57 33)(11 35 59)(12 60 36)(14 38 62)(15 63 39)(17 41 65)(18 66 42)(20 44 68)(21 69 45)(23 47 71)(24 72 48)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,72)(65,71)(66,70)(67,69), (2,26,50)(3,51,27)(5,29,53)(6,54,30)(8,32,56)(9,57,33)(11,35,59)(12,60,36)(14,38,62)(15,63,39)(17,41,65)(18,66,42)(20,44,68)(21,69,45)(23,47,71)(24,72,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,72)(65,71)(66,70)(67,69), (2,26,50)(3,51,27)(5,29,53)(6,54,30)(8,32,56)(9,57,33)(11,35,59)(12,60,36)(14,38,62)(15,63,39)(17,41,65)(18,66,42)(20,44,68)(21,69,45)(23,47,71)(24,72,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(64,72),(65,71),(66,70),(67,69)], [(2,26,50),(3,51,27),(5,29,53),(6,54,30),(8,32,56),(9,57,33),(11,35,59),(12,60,36),(14,38,62),(15,63,39),(17,41,65),(18,66,42),(20,44,68),(21,69,45),(23,47,71),(24,72,48)]])

53 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E6F6G8A8B9A9B9C12A12B12C12D18A18B18C24A24B24C24D24E24F24G24H36A···36F72A···72L
order1222333466666668899912121212181818242424242424242436···3672···72
size113636233223336363636226662266666222266666···66···6

53 irreducible representations

dim1111112222222222226666
type+++++++++++++
imageC1C2C2C3C6C6S3D4D6D8C3×S3C3×D4D12S3×C6C3×D8D24C3×D12C3×D24C9⋊C6C2×C9⋊C6D36⋊C3D72⋊C3
kernelD72⋊C3C8×3- 1+2D36⋊C3D72C72D36C3×C24C2×3- 1+2C3×C123- 1+2C24C18C3×C6C12C9C32C6C3C8C4C2C1
# reps1122241112222244481124

Matrix representation of D72⋊C3 in GL6(𝔽73)

00555000
0023500
00005550
0000235
68180000
55500000
,
00727200
000100
72720000
010000
000010
00007272
,
100000
010000
00727200
001000
000001
00007272

G:=sub<GL(6,GF(73))| [0,0,0,0,68,55,0,0,0,0,18,50,55,23,0,0,0,0,50,5,0,0,0,0,0,0,55,23,0,0,0,0,50,5,0,0],[0,0,72,0,0,0,0,0,72,1,0,0,72,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72] >;

D72⋊C3 in GAP, Magma, Sage, TeX

D_{72}\rtimes C_3
% in TeX

G:=Group("D72:C3");
// GroupNames label

G:=SmallGroup(432,123);
// by ID

G=gap.SmallGroup(432,123);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,260,1011,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^72=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^49,c*b*c^-1=a^48*b>;
// generators/relations

׿
×
𝔽