Copied to
clipboard

G = C72.C6order 432 = 24·33

1st non-split extension by C72 of C6 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C72.1C6, Dic36⋊C3, C32.Dic12, Dic18.2C6, 3- 1+21Q16, C8.(C9⋊C6), C91(C3×Q16), C24.5(C3×S3), (C3×C24).2S3, C36.8(C2×C6), C6.7(C3×D12), C18.1(C3×D4), C12.70(S3×C6), (C3×C6).16D12, (C3×C12).43D6, C2.3(D36⋊C3), C3.3(C3×Dic12), C36.C6.2C2, (C8×3- 1+2).1C2, (C2×3- 1+2).1D4, (C4×3- 1+2).8C22, C4.8(C2×C9⋊C6), SmallGroup(432,119)

Series: Derived Chief Lower central Upper central

C1C36 — C72.C6
C1C3C9C18C36C4×3- 1+2C36.C6 — C72.C6
C9C18C36 — C72.C6
C1C2C4C8

Generators and relations for C72.C6
 G = < a,b | a72=1, b6=a36, bab-1=a47 >

Subgroups: 222 in 58 conjugacy classes, 26 normal (22 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C24, C24, Dic6, C3×Q8, 3- 1+2, Dic9, C36, C36, C3×Dic3, C3×C12, Dic12, C3×Q16, C2×3- 1+2, C72, C72, Dic18, C3×C24, C3×Dic6, C9⋊C12, C4×3- 1+2, Dic36, C3×Dic12, C8×3- 1+2, C36.C6, C72.C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, D12, C3×D4, S3×C6, Dic12, C3×Q16, C9⋊C6, C3×D12, C2×C9⋊C6, C3×Dic12, D36⋊C3, C72.C6

Smallest permutation representation of C72.C6
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 87 37 123)(2 110 62 122 50 134 38 74 26 86 14 98)(3 133 15 121 27 109 39 97 51 85 63 73)(4 84 40 120)(5 107 65 119 53 131 41 143 29 83 17 95)(6 130 18 118 30 106 42 94 54 82 66 142)(7 81 43 117)(8 104 68 116 56 128 44 140 32 80 20 92)(9 127 21 115 33 103 45 91 57 79 69 139)(10 78 46 114)(11 101 71 113 59 125 47 137 35 77 23 89)(12 124 24 112 36 100 48 88 60 76 72 136)(13 75 49 111)(16 144 52 108)(19 141 55 105)(22 138 58 102)(25 135 61 99)(28 132 64 96)(31 129 67 93)(34 126 70 90)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,87,37,123)(2,110,62,122,50,134,38,74,26,86,14,98)(3,133,15,121,27,109,39,97,51,85,63,73)(4,84,40,120)(5,107,65,119,53,131,41,143,29,83,17,95)(6,130,18,118,30,106,42,94,54,82,66,142)(7,81,43,117)(8,104,68,116,56,128,44,140,32,80,20,92)(9,127,21,115,33,103,45,91,57,79,69,139)(10,78,46,114)(11,101,71,113,59,125,47,137,35,77,23,89)(12,124,24,112,36,100,48,88,60,76,72,136)(13,75,49,111)(16,144,52,108)(19,141,55,105)(22,138,58,102)(25,135,61,99)(28,132,64,96)(31,129,67,93)(34,126,70,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,87,37,123)(2,110,62,122,50,134,38,74,26,86,14,98)(3,133,15,121,27,109,39,97,51,85,63,73)(4,84,40,120)(5,107,65,119,53,131,41,143,29,83,17,95)(6,130,18,118,30,106,42,94,54,82,66,142)(7,81,43,117)(8,104,68,116,56,128,44,140,32,80,20,92)(9,127,21,115,33,103,45,91,57,79,69,139)(10,78,46,114)(11,101,71,113,59,125,47,137,35,77,23,89)(12,124,24,112,36,100,48,88,60,76,72,136)(13,75,49,111)(16,144,52,108)(19,141,55,105)(22,138,58,102)(25,135,61,99)(28,132,64,96)(31,129,67,93)(34,126,70,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,87,37,123),(2,110,62,122,50,134,38,74,26,86,14,98),(3,133,15,121,27,109,39,97,51,85,63,73),(4,84,40,120),(5,107,65,119,53,131,41,143,29,83,17,95),(6,130,18,118,30,106,42,94,54,82,66,142),(7,81,43,117),(8,104,68,116,56,128,44,140,32,80,20,92),(9,127,21,115,33,103,45,91,57,79,69,139),(10,78,46,114),(11,101,71,113,59,125,47,137,35,77,23,89),(12,124,24,112,36,100,48,88,60,76,72,136),(13,75,49,111),(16,144,52,108),(19,141,55,105),(22,138,58,102),(25,135,61,99),(28,132,64,96),(31,129,67,93),(34,126,70,90)]])

53 conjugacy classes

class 1  2 3A3B3C4A4B4C6A6B6C8A8B9A9B9C12A12B12C12D12E12F12G12H18A18B18C24A24B24C24D24E24F24G24H36A···36F72A···72L
order12333444666889991212121212121212181818242424242424242436···3672···72
size112332363623322666226636363636666222266666···66···6

53 irreducible representations

dim1111112222222222226666
type++++++-+-+++-
imageC1C2C2C3C6C6S3D4D6Q16C3×S3C3×D4D12S3×C6C3×Q16Dic12C3×D12C3×Dic12C9⋊C6C2×C9⋊C6D36⋊C3C72.C6
kernelC72.C6C8×3- 1+2C36.C6Dic36C72Dic18C3×C24C2×3- 1+2C3×C123- 1+2C24C18C3×C6C12C9C32C6C3C8C4C2C1
# reps1122241112222244481124

Matrix representation of C72.C6 in GL6(𝔽73)

55552860
232323234128
68230000
50180000
0500505068
0506805068
,
68190000
1450000
545454544049
68686868499
50019195
50195195

G:=sub<GL(6,GF(73))| [5,23,68,50,0,0,5,23,23,18,50,50,5,23,0,0,0,68,5,23,0,0,50,0,28,41,0,0,50,50,60,28,0,0,68,68],[68,14,54,68,5,5,19,5,54,68,0,0,0,0,54,68,0,19,0,0,54,68,19,5,0,0,40,49,19,19,0,0,49,9,5,5] >;

C72.C6 in GAP, Magma, Sage, TeX

C_{72}.C_6
% in TeX

G:=Group("C72.C6");
// GroupNames label

G:=SmallGroup(432,119);
// by ID

G=gap.SmallGroup(432,119);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,260,1011,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^72=1,b^6=a^36,b*a*b^-1=a^47>;
// generators/relations

׿
×
𝔽