Extensions 1→N→G→Q→1 with N=Dic9 and Q=D6

Direct product G=N×Q with N=Dic9 and Q=D6
dρLabelID
C2×S3×Dic9144C2xS3xDic9432,308

Semidirect products G=N:Q with N=Dic9 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic91D6 = S3×C9⋊D4φ: D6/S3C2 ⊆ Out Dic9724Dic9:1D6432,313
Dic92D6 = D18⋊D6φ: D6/S3C2 ⊆ Out Dic9364+Dic9:2D6432,315
Dic93D6 = D9×D12φ: D6/C6C2 ⊆ Out Dic9724+Dic9:3D6432,292
Dic94D6 = C2×C9⋊D12φ: D6/C6C2 ⊆ Out Dic972Dic9:4D6432,312
Dic95D6 = C4×S3×D9φ: trivial image724Dic9:5D6432,290
Dic96D6 = C2×C18.D6φ: trivial image72Dic9:6D6432,306

Non-split extensions G=N.Q with N=Dic9 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic9.1D6 = Dic18⋊S3φ: D6/S3C2 ⊆ Out Dic9724Dic9.1D6432,283
Dic9.2D6 = S3×Dic18φ: D6/S3C2 ⊆ Out Dic91444-Dic9.2D6432,284
Dic9.3D6 = D12⋊D9φ: D6/S3C2 ⊆ Out Dic9724Dic9.3D6432,286
Dic9.4D6 = Dic9.D6φ: D6/S3C2 ⊆ Out Dic9724+Dic9.4D6432,289
Dic9.5D6 = D18.3D6φ: D6/S3C2 ⊆ Out Dic9724Dic9.5D6432,305
Dic9.6D6 = D18.4D6φ: D6/S3C2 ⊆ Out Dic9724-Dic9.6D6432,310
Dic9.7D6 = D9×Dic6φ: D6/C6C2 ⊆ Out Dic91444-Dic9.7D6432,280
Dic9.8D6 = D6.D18φ: D6/C6C2 ⊆ Out Dic9724Dic9.8D6432,287
Dic9.9D6 = C2×C9⋊Dic6φ: D6/C6C2 ⊆ Out Dic9144Dic9.9D6432,303
Dic9.10D6 = Dic65D9φ: trivial image724+Dic9.10D6432,282
Dic9.11D6 = D125D9φ: trivial image1444-Dic9.11D6432,285
Dic9.12D6 = Dic3.D18φ: trivial image724Dic9.12D6432,309

׿
×
𝔽