Extensions 1→N→G→Q→1 with N=Dic3xC18 and Q=C2

Direct product G=NxQ with N=Dic3xC18 and Q=C2
dρLabelID
Dic3xC2xC18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=Dic3xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC18):1C2 = D18:Dic3φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18):1C2432,91
(Dic3xC18):2C2 = C6.18D36φ: C2/C1C2 ⊆ Out Dic3xC1872(Dic3xC18):2C2432,92
(Dic3xC18):3C2 = C9xD6:C4φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18):3C2432,135
(Dic3xC18):4C2 = C9xC6.D4φ: C2/C1C2 ⊆ Out Dic3xC1872(Dic3xC18):4C2432,165
(Dic3xC18):5C2 = C2xC3:D36φ: C2/C1C2 ⊆ Out Dic3xC1872(Dic3xC18):5C2432,307
(Dic3xC18):6C2 = D18.3D6φ: C2/C1C2 ⊆ Out Dic3xC18724(Dic3xC18):6C2432,305
(Dic3xC18):7C2 = C2xDic3xD9φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18):7C2432,304
(Dic3xC18):8C2 = C2xC18.D6φ: C2/C1C2 ⊆ Out Dic3xC1872(Dic3xC18):8C2432,306
(Dic3xC18):9C2 = C9xD4:2S3φ: C2/C1C2 ⊆ Out Dic3xC18724(Dic3xC18):9C2432,359
(Dic3xC18):10C2 = C18xC3:D4φ: C2/C1C2 ⊆ Out Dic3xC1872(Dic3xC18):10C2432,375
(Dic3xC18):11C2 = S3xC2xC36φ: trivial image144(Dic3xC18):11C2432,345

Non-split extensions G=N.Q with N=Dic3xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC18).1C2 = Dic9:Dic3φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).1C2432,88
(Dic3xC18).2C2 = C18.Dic6φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).2C2432,89
(Dic3xC18).3C2 = C9xDic3:C4φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).3C2432,132
(Dic3xC18).4C2 = C9xC4:Dic3φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).4C2432,133
(Dic3xC18).5C2 = Dic3:Dic9φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).5C2432,90
(Dic3xC18).6C2 = C2xC9:Dic6φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).6C2432,303
(Dic3xC18).7C2 = Dic3xDic9φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).7C2432,87
(Dic3xC18).8C2 = C18xDic6φ: C2/C1C2 ⊆ Out Dic3xC18144(Dic3xC18).8C2432,341
(Dic3xC18).9C2 = Dic3xC36φ: trivial image144(Dic3xC18).9C2432,131

׿
x
:
Z
F
o
wr
Q
<