Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=D9

Direct product G=N×Q with N=C2×Dic3 and Q=D9
dρLabelID
C2×Dic3×D9144C2xDic3xD9432,304

Semidirect products G=N:Q with N=C2×Dic3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1D9 = D18⋊Dic3φ: D9/C9C2 ⊆ Out C2×Dic3144(C2xDic3):1D9432,91
(C2×Dic3)⋊2D9 = C6.18D36φ: D9/C9C2 ⊆ Out C2×Dic372(C2xDic3):2D9432,92
(C2×Dic3)⋊3D9 = D18.3D6φ: D9/C9C2 ⊆ Out C2×Dic3724(C2xDic3):3D9432,305
(C2×Dic3)⋊4D9 = C2×C3⋊D36φ: D9/C9C2 ⊆ Out C2×Dic372(C2xDic3):4D9432,307
(C2×Dic3)⋊5D9 = C2×C18.D6φ: trivial image72(C2xDic3):5D9432,306

Non-split extensions G=N.Q with N=C2×Dic3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1D9 = Dic9⋊Dic3φ: D9/C9C2 ⊆ Out C2×Dic3144(C2xDic3).1D9432,88
(C2×Dic3).2D9 = C18.Dic6φ: D9/C9C2 ⊆ Out C2×Dic3144(C2xDic3).2D9432,89
(C2×Dic3).3D9 = Dic3⋊Dic9φ: D9/C9C2 ⊆ Out C2×Dic3144(C2xDic3).3D9432,90
(C2×Dic3).4D9 = C2×C9⋊Dic6φ: D9/C9C2 ⊆ Out C2×Dic3144(C2xDic3).4D9432,303
(C2×Dic3).5D9 = Dic3×Dic9φ: trivial image144(C2xDic3).5D9432,87

׿
×
𝔽