| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|
| (C22×C14).1D4 = C7×C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).1D4 | 448,155 | 
| (C22×C14).2D4 = C7×C23.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).2D4 | 448,156 | 
| (C22×C14).3D4 = C7×C42⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).3D4 | 448,157 | 
| (C22×C14).4D4 = C7×C42⋊3C4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).4D4 | 448,158 | 
| (C22×C14).5D4 = C7×D4⋊4D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).5D4 | 448,861 | 
| (C22×C14).6D4 = C7×D4.9D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).6D4 | 448,863 | 
| (C22×C14).7D4 = C7×C23.7D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).7D4 | 448,866 | 
| (C22×C14).8D4 = C7⋊C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 8+ | (C2^2xC14).8D4 | 448,28 | 
| (C22×C14).9D4 = (C2×C28).D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).9D4 | 448,29 | 
| (C22×C14).10D4 = C23.D28 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).10D4 | 448,30 | 
| (C22×C14).11D4 = C23.2D28 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 8+ | (C2^2xC14).11D4 | 448,31 | 
| (C22×C14).12D4 = C23.3D28 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 8+ | (C2^2xC14).12D4 | 448,32 | 
| (C22×C14).13D4 = C23.4D28 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).13D4 | 448,33 | 
| (C22×C14).14D4 = C24⋊Dic7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).14D4 | 448,93 | 
| (C22×C14).15D4 = (C22×C28)⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).15D4 | 448,96 | 
| (C22×C14).16D4 = C42⋊2Dic7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).16D4 | 448,98 | 
| (C22×C14).17D4 = C42⋊3Dic7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).17D4 | 448,102 | 
| (C22×C14).18D4 = C23.5D28 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).18D4 | 448,276 | 
| (C22×C14).19D4 = D28.1D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).19D4 | 448,280 | 
| (C22×C14).20D4 = D28⋊1D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 8+ | (C2^2xC14).20D4 | 448,281 | 
| (C22×C14).21D4 = C22⋊C4⋊D14 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).21D4 | 448,587 | 
| (C22×C14).22D4 = C42⋊5D14 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).22D4 | 448,595 | 
| (C22×C14).23D4 = D28⋊5D4 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 4 | (C2^2xC14).23D4 | 448,611 | 
| (C22×C14).24D4 = 2+ 1+4⋊D7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 56 | 8+ | (C2^2xC14).24D4 | 448,775 | 
| (C22×C14).25D4 = 2+ 1+4.D7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).25D4 | 448,776 | 
| (C22×C14).26D4 = 2+ 1+4.2D7 | φ: D4/C1 → D4 ⊆ Aut C22×C14 | 112 | 8- | (C2^2xC14).26D4 | 448,777 | 
| (C22×C14).27D4 = C7×C4.9C42 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).27D4 | 448,141 | 
| (C22×C14).28D4 = C7×C23.10D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).28D4 | 448,802 | 
| (C22×C14).29D4 = C7×C23.11D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).29D4 | 448,805 | 
| (C22×C14).30D4 = C7×C42⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).30D4 | 448,829 | 
| (C22×C14).31D4 = C7×D4⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).31D4 | 448,857 | 
| (C22×C14).32D4 = C7×D4.7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).32D4 | 448,860 | 
| (C22×C14).33D4 = C7×C8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).33D4 | 448,876 | 
| (C22×C14).34D4 = C7×C8⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).34D4 | 448,877 | 
| (C22×C14).35D4 = C7×C8.D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).35D4 | 448,878 | 
| (C22×C14).36D4 = C7×C23.19D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).36D4 | 448,890 | 
| (C22×C14).37D4 = C7×C23.20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).37D4 | 448,893 | 
| (C22×C14).38D4 = C7×D8⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).38D4 | 448,1358 | 
| (C22×C14).39D4 = C23.30D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).39D4 | 448,24 | 
| (C22×C14).40D4 = C22.2D56 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).40D4 | 448,27 | 
| (C22×C14).41D4 = C24.D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).41D4 | 448,83 | 
| (C22×C14).42D4 = C42⋊Dic7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).42D4 | 448,88 | 
| (C22×C14).43D4 = C28.2C42 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).43D4 | 448,89 | 
| (C22×C14).44D4 = (D4×C14)⋊C4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).44D4 | 448,94 | 
| (C22×C14).45D4 = C4⋊C4⋊Dic7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).45D4 | 448,95 | 
| (C22×C14).46D4 = C28.3C42 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).46D4 | 448,112 | 
| (C22×C14).47D4 = C23.9D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).47D4 | 448,114 | 
| (C22×C14).48D4 = C23.34D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).48D4 | 448,255 | 
| (C22×C14).49D4 = C23.35D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).49D4 | 448,256 | 
| (C22×C14).50D4 = C23.10D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).50D4 | 448,257 | 
| (C22×C14).51D4 = D28.31D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).51D4 | 448,265 | 
| (C22×C14).52D4 = D28⋊13D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).52D4 | 448,266 | 
| (C22×C14).53D4 = D28.32D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).53D4 | 448,267 | 
| (C22×C14).54D4 = D28⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).54D4 | 448,268 | 
| (C22×C14).55D4 = C23.38D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).55D4 | 448,269 | 
| (C22×C14).56D4 = C22.D56 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).56D4 | 448,270 | 
| (C22×C14).57D4 = C23.13D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).57D4 | 448,271 | 
| (C22×C14).58D4 = Dic14⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).58D4 | 448,272 | 
| (C22×C14).59D4 = C22⋊Dic28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).59D4 | 448,273 | 
| (C22×C14).60D4 = C24.44D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).60D4 | 448,476 | 
| (C22×C14).61D4 = C23.42D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).61D4 | 448,477 | 
| (C22×C14).62D4 = C24.46D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).62D4 | 448,480 | 
| (C22×C14).63D4 = C24.47D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).63D4 | 448,484 | 
| (C22×C14).64D4 = C24.9D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).64D4 | 448,486 | 
| (C22×C14).65D4 = C24.10D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).65D4 | 448,487 | 
| (C22×C14).66D4 = C2×C23.1D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).66D4 | 448,488 | 
| (C22×C14).67D4 = C23.44D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).67D4 | 448,489 | 
| (C22×C14).68D4 = C23.45D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).68D4 | 448,492 | 
| (C22×C14).69D4 = C24.14D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).69D4 | 448,493 | 
| (C22×C14).70D4 = C23.16D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).70D4 | 448,495 | 
| (C22×C14).71D4 = C28.(C2×Q8) | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).71D4 | 448,529 | 
| (C22×C14).72D4 = C4⋊C4.233D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).72D4 | 448,530 | 
| (C22×C14).73D4 = C28.45(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).73D4 | 448,532 | 
| (C22×C14).74D4 = C4⋊C4⋊36D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).74D4 | 448,535 | 
| (C22×C14).75D4 = C4.(C2×D28) | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).75D4 | 448,536 | 
| (C22×C14).76D4 = C4⋊C4.236D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).76D4 | 448,537 | 
| (C22×C14).77D4 = (C2×C4).47D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).77D4 | 448,538 | 
| (C22×C14).78D4 = C42⋊4D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).78D4 | 448,539 | 
| (C22×C14).79D4 = (C2×C14).D8 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).79D4 | 448,567 | 
| (C22×C14).80D4 = C4⋊D4.D7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).80D4 | 448,568 | 
| (C22×C14).81D4 = (C2×D4).D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).81D4 | 448,569 | 
| (C22×C14).82D4 = D28⋊16D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).82D4 | 448,570 | 
| (C22×C14).83D4 = D28⋊17D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).83D4 | 448,571 | 
| (C22×C14).84D4 = C7⋊C8⋊22D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).84D4 | 448,572 | 
| (C22×C14).85D4 = C4⋊D4⋊D7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).85D4 | 448,573 | 
| (C22×C14).86D4 = Dic14⋊17D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).86D4 | 448,574 | 
| (C22×C14).87D4 = C7⋊C8⋊23D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).87D4 | 448,575 | 
| (C22×C14).88D4 = C7⋊C8⋊5D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).88D4 | 448,576 | 
| (C22×C14).89D4 = C22⋊Q8.D7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).89D4 | 448,577 | 
| (C22×C14).90D4 = (C2×C14).Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).90D4 | 448,578 | 
| (C22×C14).91D4 = C14.(C4○D8) | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).91D4 | 448,579 | 
| (C22×C14).92D4 = D28.36D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).92D4 | 448,580 | 
| (C22×C14).93D4 = D28.37D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).93D4 | 448,581 | 
| (C22×C14).94D4 = C7⋊C8⋊24D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).94D4 | 448,582 | 
| (C22×C14).95D4 = C7⋊C8⋊6D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).95D4 | 448,583 | 
| (C22×C14).96D4 = Dic14.37D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).96D4 | 448,584 | 
| (C22×C14).97D4 = C7⋊C8.29D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).97D4 | 448,585 | 
| (C22×C14).98D4 = C7⋊C8.6D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).98D4 | 448,586 | 
| (C22×C14).99D4 = C23.46D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).99D4 | 448,654 | 
| (C22×C14).100D4 = C23.47D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).100D4 | 448,655 | 
| (C22×C14).101D4 = C23.48D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).101D4 | 448,665 | 
| (C22×C14).102D4 = C23.49D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).102D4 | 448,667 | 
| (C22×C14).103D4 = C56⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).103D4 | 448,668 | 
| (C22×C14).104D4 = C56⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).104D4 | 448,669 | 
| (C22×C14).105D4 = C56.4D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).105D4 | 448,671 | 
| (C22×C14).106D4 = C2×D28⋊4C4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).106D4 | 448,672 | 
| (C22×C14).107D4 = C23.20D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).107D4 | 448,673 | 
| (C22×C14).108D4 = C2×C23⋊Dic7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).108D4 | 448,753 | 
| (C22×C14).109D4 = C24.18D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).109D4 | 448,754 | 
| (C22×C14).110D4 = C24.20D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).110D4 | 448,756 | 
| (C22×C14).111D4 = C4○D4⋊Dic7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).111D4 | 448,766 | 
| (C22×C14).112D4 = C28.(C2×D4) | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).112D4 | 448,767 | 
| (C22×C14).113D4 = C2×D4⋊2Dic7 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).113D4 | 448,769 | 
| (C22×C14).114D4 = (D4×C14)⋊9C4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).114D4 | 448,770 | 
| (C22×C14).115D4 = (C7×D4)⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).115D4 | 448,772 | 
| (C22×C14).116D4 = (C7×D4).32D4 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).116D4 | 448,773 | 
| (C22×C14).117D4 = C2×C22.D28 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).117D4 | 448,945 | 
| (C22×C14).118D4 = C2×C8⋊D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).118D4 | 448,1199 | 
| (C22×C14).119D4 = C2×C8.D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).119D4 | 448,1200 | 
| (C22×C14).120D4 = C56.9C23 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).120D4 | 448,1201 | 
| (C22×C14).121D4 = C2×C23.18D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).121D4 | 448,1249 | 
| (C22×C14).122D4 = C2×D4⋊D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).122D4 | 448,1273 | 
| (C22×C14).123D4 = C2×D4.8D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).123D4 | 448,1274 | 
| (C22×C14).124D4 = C28.C24 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 112 | 4 | (C2^2xC14).124D4 | 448,1275 | 
| (C22×C14).125D4 = C2×D4.9D14 | φ: D4/C2 → C22 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).125D4 | 448,1276 | 
| (C22×C14).126D4 = C7×C23.7Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).126D4 | 448,788 | 
| (C22×C14).127D4 = C7×C23.24D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).127D4 | 448,824 | 
| (C22×C14).128D4 = C7×C23.25D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).128D4 | 448,835 | 
| (C22×C14).129D4 = C7×C8⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).129D4 | 448,873 | 
| (C22×C14).130D4 = C7×C8⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).130D4 | 448,874 | 
| (C22×C14).131D4 = C7×C8.18D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).131D4 | 448,875 | 
| (C22×C14).132D4 = C14×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).132D4 | 448,1355 | 
| (C22×C14).133D4 = C28.9C42 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).133D4 | 448,108 | 
| (C22×C14).134D4 = C2×C28.44D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).134D4 | 448,637 | 
| (C22×C14).135D4 = C2×C8⋊Dic7 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).135D4 | 448,638 | 
| (C22×C14).136D4 = C2×C56⋊1C4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).136D4 | 448,639 | 
| (C22×C14).137D4 = C23.22D28 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).137D4 | 448,640 | 
| (C22×C14).138D4 = C2×C2.D56 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).138D4 | 448,646 | 
| (C22×C14).139D4 = C23.23D28 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).139D4 | 448,647 | 
| (C22×C14).140D4 = C56⋊30D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).140D4 | 448,648 | 
| (C22×C14).141D4 = C56⋊29D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).141D4 | 448,649 | 
| (C22×C14).142D4 = C56.82D4 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).142D4 | 448,650 | 
| (C22×C14).143D4 = C23.27D28 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).143D4 | 448,746 | 
| (C22×C14).144D4 = C22×C56⋊C2 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).144D4 | 448,1192 | 
| (C22×C14).145D4 = C22×D56 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).145D4 | 448,1193 | 
| (C22×C14).146D4 = C2×D56⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).146D4 | 448,1194 | 
| (C22×C14).147D4 = C22×Dic28 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).147D4 | 448,1195 | 
| (C22×C14).148D4 = C22×C4⋊Dic7 | φ: D4/C4 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).148D4 | 448,1238 | 
| (C22×C14).149D4 = C7×C22.SD16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).149D4 | 448,131 | 
| (C22×C14).150D4 = C7×C23.31D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).150D4 | 448,132 | 
| (C22×C14).151D4 = C7×C42⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).151D4 | 448,143 | 
| (C22×C14).152D4 = C7×C23.9D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).152D4 | 448,146 | 
| (C22×C14).153D4 = C7×C24⋊3C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).153D4 | 448,787 | 
| (C22×C14).154D4 = C7×C23.34D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).154D4 | 448,789 | 
| (C22×C14).155D4 = C7×C23.8Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).155D4 | 448,793 | 
| (C22×C14).156D4 = C7×C23.23D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).156D4 | 448,794 | 
| (C22×C14).157D4 = C14×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).157D4 | 448,817 | 
| (C22×C14).158D4 = C7×C23.36D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).158D4 | 448,825 | 
| (C22×C14).159D4 = C7×C23.37D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).159D4 | 448,826 | 
| (C22×C14).160D4 = C7×C23.38D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).160D4 | 448,827 | 
| (C22×C14).161D4 = C14×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).161D4 | 448,828 | 
| (C22×C14).162D4 = C7×M4(2)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).162D4 | 448,836 | 
| (C22×C14).163D4 = C7×C22⋊D8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).163D4 | 448,855 | 
| (C22×C14).164D4 = C7×Q8⋊D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).164D4 | 448,856 | 
| (C22×C14).165D4 = C7×C22⋊SD16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).165D4 | 448,858 | 
| (C22×C14).166D4 = C7×C22⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).166D4 | 448,859 | 
| (C22×C14).167D4 = C7×C22.D8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).167D4 | 448,888 | 
| (C22×C14).168D4 = C7×C23.46D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).168D4 | 448,889 | 
| (C22×C14).169D4 = C7×C23.47D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).169D4 | 448,891 | 
| (C22×C14).170D4 = C7×C23.48D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).170D4 | 448,892 | 
| (C22×C14).171D4 = C14×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).171D4 | 448,1307 | 
| (C22×C14).172D4 = C14×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).172D4 | 448,1356 | 
| (C22×C14).173D4 = C14×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).173D4 | 448,1357 | 
| (C22×C14).174D4 = C14.C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).174D4 | 448,8 | 
| (C22×C14).175D4 = C4⋊Dic7⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).175D4 | 448,9 | 
| (C22×C14).176D4 = C28.8C42 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).176D4 | 448,80 | 
| (C22×C14).177D4 = C24.2D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).177D4 | 448,84 | 
| (C22×C14).178D4 = C28.C42 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).178D4 | 448,86 | 
| (C22×C14).179D4 = C2×Dic14⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).179D4 | 448,461 | 
| (C22×C14).180D4 = C2×C28.Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).180D4 | 448,496 | 
| (C22×C14).181D4 = C2×C4.Dic14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).181D4 | 448,497 | 
| (C22×C14).182D4 = C4.Dic7⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).182D4 | 448,498 | 
| (C22×C14).183D4 = C2×C14.D8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).183D4 | 448,499 | 
| (C22×C14).184D4 = C4○D28⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).184D4 | 448,500 | 
| (C22×C14).185D4 = (C2×C14).40D8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).185D4 | 448,501 | 
| (C22×C14).186D4 = C4⋊C4.228D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).186D4 | 448,502 | 
| (C22×C14).187D4 = C2×C14.Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).187D4 | 448,503 | 
| (C22×C14).188D4 = C4⋊C4.230D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).188D4 | 448,504 | 
| (C22×C14).189D4 = C4⋊C4.231D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).189D4 | 448,505 | 
| (C22×C14).190D4 = C2×C14.C42 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).190D4 | 448,742 | 
| (C22×C14).191D4 = C24.62D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).191D4 | 448,744 | 
| (C22×C14).192D4 = C24.63D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).192D4 | 448,745 | 
| (C22×C14).193D4 = C23.28D28 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).193D4 | 448,747 | 
| (C22×C14).194D4 = C2×D4⋊Dic7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).194D4 | 448,748 | 
| (C22×C14).195D4 = (D4×C14)⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).195D4 | 448,749 | 
| (C22×C14).196D4 = (C2×C14)⋊8D8 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).196D4 | 448,751 | 
| (C22×C14).197D4 = (C7×D4).31D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).197D4 | 448,752 | 
| (C22×C14).198D4 = C2×Q8⋊Dic7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).198D4 | 448,758 | 
| (C22×C14).199D4 = (Q8×C14)⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).199D4 | 448,759 | 
| (C22×C14).200D4 = (C7×Q8)⋊13D4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).200D4 | 448,761 | 
| (C22×C14).201D4 = (C2×C14)⋊8Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).201D4 | 448,762 | 
| (C22×C14).202D4 = C25.D7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).202D4 | 448,781 | 
| (C22×C14).203D4 = C22×Dic7⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).203D4 | 448,1236 | 
| (C22×C14).204D4 = C22×D14⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).204D4 | 448,1240 | 
| (C22×C14).205D4 = C2×C23.23D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).205D4 | 448,1242 | 
| (C22×C14).206D4 = C22×D4⋊D7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).206D4 | 448,1245 | 
| (C22×C14).207D4 = C2×D4.D14 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 112 |  | (C2^2xC14).207D4 | 448,1246 | 
| (C22×C14).208D4 = C22×D4.D7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).208D4 | 448,1247 | 
| (C22×C14).209D4 = C22×Q8⋊D7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).209D4 | 448,1260 | 
| (C22×C14).210D4 = C2×C28.C23 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).210D4 | 448,1261 | 
| (C22×C14).211D4 = C22×C7⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 448 |  | (C2^2xC14).211D4 | 448,1262 | 
| (C22×C14).212D4 = C22×C23.D7 | φ: D4/C22 → C2 ⊆ Aut C22×C14 | 224 |  | (C2^2xC14).212D4 | 448,1292 | 
| (C22×C14).213D4 = C7×C22.4Q16 | central extension (φ=1) | 448 |  | (C2^2xC14).213D4 | 448,144 | 
| (C22×C14).214D4 = C14×C2.C42 | central extension (φ=1) | 448 |  | (C2^2xC14).214D4 | 448,783 | 
| (C22×C14).215D4 = C14×D4⋊C4 | central extension (φ=1) | 224 |  | (C2^2xC14).215D4 | 448,822 | 
| (C22×C14).216D4 = C14×Q8⋊C4 | central extension (φ=1) | 448 |  | (C2^2xC14).216D4 | 448,823 | 
| (C22×C14).217D4 = C14×C4.Q8 | central extension (φ=1) | 448 |  | (C2^2xC14).217D4 | 448,833 | 
| (C22×C14).218D4 = C14×C2.D8 | central extension (φ=1) | 448 |  | (C2^2xC14).218D4 | 448,834 | 
| (C22×C14).219D4 = C22⋊C4×C2×C14 | central extension (φ=1) | 224 |  | (C2^2xC14).219D4 | 448,1295 | 
| (C22×C14).220D4 = C4⋊C4×C2×C14 | central extension (φ=1) | 448 |  | (C2^2xC14).220D4 | 448,1296 | 
| (C22×C14).221D4 = D8×C2×C14 | central extension (φ=1) | 224 |  | (C2^2xC14).221D4 | 448,1352 | 
| (C22×C14).222D4 = SD16×C2×C14 | central extension (φ=1) | 224 |  | (C2^2xC14).222D4 | 448,1353 | 
| (C22×C14).223D4 = Q16×C2×C14 | central extension (φ=1) | 448 |  | (C2^2xC14).223D4 | 448,1354 |