Copied to
clipboard

G = (C2×C28).D4order 448 = 26·7

2nd non-split extension by C2×C28 of D4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C28).2D4, (C2×C4).2D28, (C2×D4).2D14, C23.D72C4, C23⋊C4.1D7, C23.2(C4×D7), (C22×C14).9D4, C14.8(C23⋊C4), C28.D4.1C2, (C22×Dic7)⋊1C4, (D4×C14).2C22, C23.2(C7⋊D4), C71(C23.D4), C22.9(D14⋊C4), C23.18D14.1C2, C2.9(C23.1D14), (C7×C23⋊C4).1C2, (C22×C14).2(C2×C4), (C2×C14).2(C22⋊C4), SmallGroup(448,29)

Series: Derived Chief Lower central Upper central

C1C22×C14 — (C2×C28).D4
C1C7C14C2×C14C22×C14D4×C14C23.18D14 — (C2×C28).D4
C7C14C2×C14C22×C14 — (C2×C28).D4
C1C2C22C2×D4C23⋊C4

Generators and relations for (C2×C28).D4
 G = < a,b,c,d | a2=b4=c28=1, d2=b-1, ab=ba, cac-1=dad-1=ab2, cbc-1=ab-1, bd=db, dcd-1=bc-1 >

Subgroups: 348 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C14, C14, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic7, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22.D4, C7⋊C8, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C23.D4, C4.Dic7, Dic7⋊C4, C23.D7, C23.D7, C7×C22⋊C4, C22×Dic7, D4×C14, C28.D4, C7×C23⋊C4, C23.18D14, (C2×C28).D4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C23.D4, D14⋊C4, C23.1D14, (C2×C28).D4

Smallest permutation representation of (C2×C28).D4
On 112 points
Generators in S112
(1 59)(3 61)(5 63)(7 65)(9 67)(11 69)(13 71)(15 73)(17 75)(19 77)(21 79)(23 81)(25 83)(27 57)(29 103)(31 105)(33 107)(35 109)(37 111)(39 85)(41 87)(43 89)(45 91)(47 93)(49 95)(51 97)(53 99)(55 101)
(1 101 59 55)(2 102 60 56)(3 29 61 103)(4 30 62 104)(5 105 63 31)(6 106 64 32)(7 33 65 107)(8 34 66 108)(9 109 67 35)(10 110 68 36)(11 37 69 111)(12 38 70 112)(13 85 71 39)(14 86 72 40)(15 41 73 87)(16 42 74 88)(17 89 75 43)(18 90 76 44)(19 45 77 91)(20 46 78 92)(21 93 79 47)(22 94 80 48)(23 49 81 95)(24 50 82 96)(25 97 83 51)(26 98 84 52)(27 53 57 99)(28 54 58 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 86 55 14 59 40 101 72)(2 71 56 85 60 13 102 39)(3 112 103 70 61 38 29 12)(4 11 104 111 62 69 30 37)(5 110 31 10 63 36 105 68)(6 67 32 109 64 9 106 35)(7 108 107 66 65 34 33 8)(15 100 87 58 73 54 41 28)(16 27 88 99 74 57 42 53)(17 98 43 26 75 52 89 84)(18 83 44 97 76 25 90 51)(19 96 91 82 77 50 45 24)(20 23 92 95 78 81 46 49)(21 94 47 22 79 48 93 80)

G:=sub<Sym(112)| (1,59)(3,61)(5,63)(7,65)(9,67)(11,69)(13,71)(15,73)(17,75)(19,77)(21,79)(23,81)(25,83)(27,57)(29,103)(31,105)(33,107)(35,109)(37,111)(39,85)(41,87)(43,89)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101), (1,101,59,55)(2,102,60,56)(3,29,61,103)(4,30,62,104)(5,105,63,31)(6,106,64,32)(7,33,65,107)(8,34,66,108)(9,109,67,35)(10,110,68,36)(11,37,69,111)(12,38,70,112)(13,85,71,39)(14,86,72,40)(15,41,73,87)(16,42,74,88)(17,89,75,43)(18,90,76,44)(19,45,77,91)(20,46,78,92)(21,93,79,47)(22,94,80,48)(23,49,81,95)(24,50,82,96)(25,97,83,51)(26,98,84,52)(27,53,57,99)(28,54,58,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,86,55,14,59,40,101,72)(2,71,56,85,60,13,102,39)(3,112,103,70,61,38,29,12)(4,11,104,111,62,69,30,37)(5,110,31,10,63,36,105,68)(6,67,32,109,64,9,106,35)(7,108,107,66,65,34,33,8)(15,100,87,58,73,54,41,28)(16,27,88,99,74,57,42,53)(17,98,43,26,75,52,89,84)(18,83,44,97,76,25,90,51)(19,96,91,82,77,50,45,24)(20,23,92,95,78,81,46,49)(21,94,47,22,79,48,93,80)>;

G:=Group( (1,59)(3,61)(5,63)(7,65)(9,67)(11,69)(13,71)(15,73)(17,75)(19,77)(21,79)(23,81)(25,83)(27,57)(29,103)(31,105)(33,107)(35,109)(37,111)(39,85)(41,87)(43,89)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101), (1,101,59,55)(2,102,60,56)(3,29,61,103)(4,30,62,104)(5,105,63,31)(6,106,64,32)(7,33,65,107)(8,34,66,108)(9,109,67,35)(10,110,68,36)(11,37,69,111)(12,38,70,112)(13,85,71,39)(14,86,72,40)(15,41,73,87)(16,42,74,88)(17,89,75,43)(18,90,76,44)(19,45,77,91)(20,46,78,92)(21,93,79,47)(22,94,80,48)(23,49,81,95)(24,50,82,96)(25,97,83,51)(26,98,84,52)(27,53,57,99)(28,54,58,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,86,55,14,59,40,101,72)(2,71,56,85,60,13,102,39)(3,112,103,70,61,38,29,12)(4,11,104,111,62,69,30,37)(5,110,31,10,63,36,105,68)(6,67,32,109,64,9,106,35)(7,108,107,66,65,34,33,8)(15,100,87,58,73,54,41,28)(16,27,88,99,74,57,42,53)(17,98,43,26,75,52,89,84)(18,83,44,97,76,25,90,51)(19,96,91,82,77,50,45,24)(20,23,92,95,78,81,46,49)(21,94,47,22,79,48,93,80) );

G=PermutationGroup([[(1,59),(3,61),(5,63),(7,65),(9,67),(11,69),(13,71),(15,73),(17,75),(19,77),(21,79),(23,81),(25,83),(27,57),(29,103),(31,105),(33,107),(35,109),(37,111),(39,85),(41,87),(43,89),(45,91),(47,93),(49,95),(51,97),(53,99),(55,101)], [(1,101,59,55),(2,102,60,56),(3,29,61,103),(4,30,62,104),(5,105,63,31),(6,106,64,32),(7,33,65,107),(8,34,66,108),(9,109,67,35),(10,110,68,36),(11,37,69,111),(12,38,70,112),(13,85,71,39),(14,86,72,40),(15,41,73,87),(16,42,74,88),(17,89,75,43),(18,90,76,44),(19,45,77,91),(20,46,78,92),(21,93,79,47),(22,94,80,48),(23,49,81,95),(24,50,82,96),(25,97,83,51),(26,98,84,52),(27,53,57,99),(28,54,58,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,86,55,14,59,40,101,72),(2,71,56,85,60,13,102,39),(3,112,103,70,61,38,29,12),(4,11,104,111,62,69,30,37),(5,110,31,10,63,36,105,68),(6,67,32,109,64,9,106,35),(7,108,107,66,65,34,33,8),(15,100,87,58,73,54,41,28),(16,27,88,99,74,57,42,53),(17,98,43,26,75,52,89,84),(18,83,44,97,76,25,90,51),(19,96,91,82,77,50,45,24),(20,23,92,95,78,81,46,49),(21,94,47,22,79,48,93,80)]])

46 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F7A7B7C8A8B14A14B14C14D···14L14M14N14O28A···28O
order122224444447778814141414···1414141428···28
size1124448828285622256562224···48888···8

46 irreducible representations

dim11111122222224448
type++++++++++-
imageC1C2C2C2C4C4D4D4D7D14D28C4×D7C7⋊D4C23⋊C4C23.D4C23.1D14(C2×C28).D4
kernel(C2×C28).D4C28.D4C7×C23⋊C4C23.18D14C23.D7C22×Dic7C2×C28C22×C14C23⋊C4C2×D4C2×C4C23C23C14C7C2C1
# reps11112211336661263

Matrix representation of (C2×C28).D4 in GL6(𝔽113)

100000
010000
00112000
00011200
000010
00962701
,
100000
010000
0015000
00859800
0000980
0039661515
,
01040000
88790000
000010
0046208181
009810500
0057734593
,
112800000
010000
0029479883
00101392828
00110600
001346345

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,96,0,0,0,112,0,27,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,85,0,39,0,0,0,98,0,66,0,0,0,0,98,15,0,0,0,0,0,15],[0,88,0,0,0,0,104,79,0,0,0,0,0,0,0,46,98,57,0,0,0,20,105,73,0,0,1,81,0,45,0,0,0,81,0,93],[112,0,0,0,0,0,80,1,0,0,0,0,0,0,29,101,1,13,0,0,47,39,106,46,0,0,98,28,0,3,0,0,83,28,0,45] >;

(C2×C28).D4 in GAP, Magma, Sage, TeX

(C_2\times C_{28}).D_4
% in TeX

G:=Group("(C2xC28).D4");
// GroupNames label

G:=SmallGroup(448,29);
// by ID

G=gap.SmallGroup(448,29);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,141,36,422,346,297,851,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^28=1,d^2=b^-1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a*b^-1,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽