metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C28).2D4, (C2×C4).2D28, (C2×D4).2D14, C23.D7⋊2C4, C23⋊C4.1D7, C23.2(C4×D7), (C22×C14).9D4, C14.8(C23⋊C4), C28.D4.1C2, (C22×Dic7)⋊1C4, (D4×C14).2C22, C23.2(C7⋊D4), C7⋊1(C23.D4), C22.9(D14⋊C4), C23.18D14.1C2, C2.9(C23.1D14), (C7×C23⋊C4).1C2, (C22×C14).2(C2×C4), (C2×C14).2(C22⋊C4), SmallGroup(448,29)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for (C2×C28).D4
G = < a,b,c,d | a2=b4=c28=1, d2=b-1, ab=ba, cac-1=dad-1=ab2, cbc-1=ab-1, bd=db, dcd-1=bc-1 >
Subgroups: 348 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C14, C14, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic7, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22.D4, C7⋊C8, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C23.D4, C4.Dic7, Dic7⋊C4, C23.D7, C23.D7, C7×C22⋊C4, C22×Dic7, D4×C14, C28.D4, C7×C23⋊C4, C23.18D14, (C2×C28).D4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C23.D4, D14⋊C4, C23.1D14, (C2×C28).D4
(1 59)(3 61)(5 63)(7 65)(9 67)(11 69)(13 71)(15 73)(17 75)(19 77)(21 79)(23 81)(25 83)(27 57)(29 103)(31 105)(33 107)(35 109)(37 111)(39 85)(41 87)(43 89)(45 91)(47 93)(49 95)(51 97)(53 99)(55 101)
(1 101 59 55)(2 102 60 56)(3 29 61 103)(4 30 62 104)(5 105 63 31)(6 106 64 32)(7 33 65 107)(8 34 66 108)(9 109 67 35)(10 110 68 36)(11 37 69 111)(12 38 70 112)(13 85 71 39)(14 86 72 40)(15 41 73 87)(16 42 74 88)(17 89 75 43)(18 90 76 44)(19 45 77 91)(20 46 78 92)(21 93 79 47)(22 94 80 48)(23 49 81 95)(24 50 82 96)(25 97 83 51)(26 98 84 52)(27 53 57 99)(28 54 58 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 86 55 14 59 40 101 72)(2 71 56 85 60 13 102 39)(3 112 103 70 61 38 29 12)(4 11 104 111 62 69 30 37)(5 110 31 10 63 36 105 68)(6 67 32 109 64 9 106 35)(7 108 107 66 65 34 33 8)(15 100 87 58 73 54 41 28)(16 27 88 99 74 57 42 53)(17 98 43 26 75 52 89 84)(18 83 44 97 76 25 90 51)(19 96 91 82 77 50 45 24)(20 23 92 95 78 81 46 49)(21 94 47 22 79 48 93 80)
G:=sub<Sym(112)| (1,59)(3,61)(5,63)(7,65)(9,67)(11,69)(13,71)(15,73)(17,75)(19,77)(21,79)(23,81)(25,83)(27,57)(29,103)(31,105)(33,107)(35,109)(37,111)(39,85)(41,87)(43,89)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101), (1,101,59,55)(2,102,60,56)(3,29,61,103)(4,30,62,104)(5,105,63,31)(6,106,64,32)(7,33,65,107)(8,34,66,108)(9,109,67,35)(10,110,68,36)(11,37,69,111)(12,38,70,112)(13,85,71,39)(14,86,72,40)(15,41,73,87)(16,42,74,88)(17,89,75,43)(18,90,76,44)(19,45,77,91)(20,46,78,92)(21,93,79,47)(22,94,80,48)(23,49,81,95)(24,50,82,96)(25,97,83,51)(26,98,84,52)(27,53,57,99)(28,54,58,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,86,55,14,59,40,101,72)(2,71,56,85,60,13,102,39)(3,112,103,70,61,38,29,12)(4,11,104,111,62,69,30,37)(5,110,31,10,63,36,105,68)(6,67,32,109,64,9,106,35)(7,108,107,66,65,34,33,8)(15,100,87,58,73,54,41,28)(16,27,88,99,74,57,42,53)(17,98,43,26,75,52,89,84)(18,83,44,97,76,25,90,51)(19,96,91,82,77,50,45,24)(20,23,92,95,78,81,46,49)(21,94,47,22,79,48,93,80)>;
G:=Group( (1,59)(3,61)(5,63)(7,65)(9,67)(11,69)(13,71)(15,73)(17,75)(19,77)(21,79)(23,81)(25,83)(27,57)(29,103)(31,105)(33,107)(35,109)(37,111)(39,85)(41,87)(43,89)(45,91)(47,93)(49,95)(51,97)(53,99)(55,101), (1,101,59,55)(2,102,60,56)(3,29,61,103)(4,30,62,104)(5,105,63,31)(6,106,64,32)(7,33,65,107)(8,34,66,108)(9,109,67,35)(10,110,68,36)(11,37,69,111)(12,38,70,112)(13,85,71,39)(14,86,72,40)(15,41,73,87)(16,42,74,88)(17,89,75,43)(18,90,76,44)(19,45,77,91)(20,46,78,92)(21,93,79,47)(22,94,80,48)(23,49,81,95)(24,50,82,96)(25,97,83,51)(26,98,84,52)(27,53,57,99)(28,54,58,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,86,55,14,59,40,101,72)(2,71,56,85,60,13,102,39)(3,112,103,70,61,38,29,12)(4,11,104,111,62,69,30,37)(5,110,31,10,63,36,105,68)(6,67,32,109,64,9,106,35)(7,108,107,66,65,34,33,8)(15,100,87,58,73,54,41,28)(16,27,88,99,74,57,42,53)(17,98,43,26,75,52,89,84)(18,83,44,97,76,25,90,51)(19,96,91,82,77,50,45,24)(20,23,92,95,78,81,46,49)(21,94,47,22,79,48,93,80) );
G=PermutationGroup([[(1,59),(3,61),(5,63),(7,65),(9,67),(11,69),(13,71),(15,73),(17,75),(19,77),(21,79),(23,81),(25,83),(27,57),(29,103),(31,105),(33,107),(35,109),(37,111),(39,85),(41,87),(43,89),(45,91),(47,93),(49,95),(51,97),(53,99),(55,101)], [(1,101,59,55),(2,102,60,56),(3,29,61,103),(4,30,62,104),(5,105,63,31),(6,106,64,32),(7,33,65,107),(8,34,66,108),(9,109,67,35),(10,110,68,36),(11,37,69,111),(12,38,70,112),(13,85,71,39),(14,86,72,40),(15,41,73,87),(16,42,74,88),(17,89,75,43),(18,90,76,44),(19,45,77,91),(20,46,78,92),(21,93,79,47),(22,94,80,48),(23,49,81,95),(24,50,82,96),(25,97,83,51),(26,98,84,52),(27,53,57,99),(28,54,58,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,86,55,14,59,40,101,72),(2,71,56,85,60,13,102,39),(3,112,103,70,61,38,29,12),(4,11,104,111,62,69,30,37),(5,110,31,10,63,36,105,68),(6,67,32,109,64,9,106,35),(7,108,107,66,65,34,33,8),(15,100,87,58,73,54,41,28),(16,27,88,99,74,57,42,53),(17,98,43,26,75,52,89,84),(18,83,44,97,76,25,90,51),(19,96,91,82,77,50,45,24),(20,23,92,95,78,81,46,49),(21,94,47,22,79,48,93,80)]])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | ··· | 14L | 14M | 14N | 14O | 28A | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | 14 | 14 | 14 | ··· | 14 | 14 | 14 | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 28 | 28 | 56 | 2 | 2 | 2 | 56 | 56 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | ··· | 8 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D7 | D14 | D28 | C4×D7 | C7⋊D4 | C23⋊C4 | C23.D4 | C23.1D14 | (C2×C28).D4 |
kernel | (C2×C28).D4 | C28.D4 | C7×C23⋊C4 | C23.18D14 | C23.D7 | C22×Dic7 | C2×C28 | C22×C14 | C23⋊C4 | C2×D4 | C2×C4 | C23 | C23 | C14 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 3 | 6 | 6 | 6 | 1 | 2 | 6 | 3 |
Matrix representation of (C2×C28).D4 ►in GL6(𝔽113)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 96 | 27 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 0 | 0 | 0 |
0 | 0 | 85 | 98 | 0 | 0 |
0 | 0 | 0 | 0 | 98 | 0 |
0 | 0 | 39 | 66 | 15 | 15 |
0 | 104 | 0 | 0 | 0 | 0 |
88 | 79 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 46 | 20 | 81 | 81 |
0 | 0 | 98 | 105 | 0 | 0 |
0 | 0 | 57 | 73 | 45 | 93 |
112 | 80 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 47 | 98 | 83 |
0 | 0 | 101 | 39 | 28 | 28 |
0 | 0 | 1 | 106 | 0 | 0 |
0 | 0 | 13 | 46 | 3 | 45 |
G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,96,0,0,0,112,0,27,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,85,0,39,0,0,0,98,0,66,0,0,0,0,98,15,0,0,0,0,0,15],[0,88,0,0,0,0,104,79,0,0,0,0,0,0,0,46,98,57,0,0,0,20,105,73,0,0,1,81,0,45,0,0,0,81,0,93],[112,0,0,0,0,0,80,1,0,0,0,0,0,0,29,101,1,13,0,0,47,39,106,46,0,0,98,28,0,3,0,0,83,28,0,45] >;
(C2×C28).D4 in GAP, Magma, Sage, TeX
(C_2\times C_{28}).D_4
% in TeX
G:=Group("(C2xC28).D4");
// GroupNames label
G:=SmallGroup(448,29);
// by ID
G=gap.SmallGroup(448,29);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,141,36,422,346,297,851,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^28=1,d^2=b^-1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a*b^-1,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations