Copied to
clipboard

G = C8×A5order 480 = 25·3·5

Direct product of C8 and A5

direct product, non-abelian, not soluble, A-group

Aliases: C8×A5, C2.1(C4×A5), C4.4(C2×A5), (C2×A5).2C4, (C4×A5).4C2, SmallGroup(480,220)

Series: ChiefDerived Lower central Upper central

C1C2C4C8 — C8×A5
A5 — C8×A5
A5 — C8×A5
C1C8

15C2
15C2
10C3
6C5
5C22
15C22
15C4
15C22
10C6
10S3
10S3
6D5
6D5
6C10
5C23
15C2×C4
15C2×C4
15C8
5A4
10C12
10D6
10Dic3
6Dic5
6C20
6D10
5C22×C4
15C2×C8
15C2×C8
5C2×A4
10C24
10C4×S3
10C3⋊C8
6C40
6C52C8
6C4×D5
5C22×C8
5C4×A4
10S3×C8
6C8×D5
5C8×A4

Smallest permutation representation of C8×A5
On 40 points
Generators in S40
(1 33 6 38 11 23 16 28)(2 26 7 31 12 36 17 21)(3 35 8 40 13 25 18 30)(4 32 9 37 14 22 19 27)(5 29 10 34 15 39 20 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,33,6,38,11,23,16,28)(2,26,7,31,12,36,17,21)(3,35,8,40,13,25,18,30)(4,32,9,37,14,22,19,27)(5,29,10,34,15,39,20,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)>;

G:=Group( (1,33,6,38,11,23,16,28)(2,26,7,31,12,36,17,21)(3,35,8,40,13,25,18,30)(4,32,9,37,14,22,19,27)(5,29,10,34,15,39,20,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,33,6,38,11,23,16,28),(2,26,7,31,12,36,17,21),(3,35,8,40,13,25,18,30),(4,32,9,37,14,22,19,27),(5,29,10,34,15,39,20,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)]])

40 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B 6 8A8B8C8D8E8F8G8H10A10B12A12B20A20B20C20D24A24B24C24D40A···40H
order1222344445568888888810101212202020202424242440···40
size1115152011151512122011111515151512122020121212122020202012···12

40 irreducible representations

dim1111333344445555
type++++++++
imageC1C2C4C8A5C2×A5C4×A5C8×A5A5C2×A5C4×A5C8×A5A5C2×A5C4×A5C8×A5
kernelC8×A5C4×A5C2×A5A5C8C4C2C1C8C4C2C1C8C4C2C1
# reps1124224811241124

Matrix representation of C8×A5 in GL4(𝔽241) generated by

211000
06400
01883410
018253207
,
177000
018221097
023300
0972317
G:=sub<GL(4,GF(241))| [211,0,0,0,0,64,188,182,0,0,34,53,0,0,10,207],[177,0,0,0,0,182,233,97,0,210,0,231,0,97,0,7] >;

C8×A5 in GAP, Magma, Sage, TeX

C_8\times A_5
% in TeX

G:=Group("C8xA5");
// GroupNames label

G:=SmallGroup(480,220);
// by ID

G=gap.SmallGroup(480,220);
# by ID

Export

Subgroup lattice of C8×A5 in TeX

׿
×
𝔽