Copied to
clipboard

G = C8xA5order 480 = 25·3·5

Direct product of C8 and A5

direct product, non-abelian, not soluble, A-group

Aliases: C8xA5, C2.1(C4xA5), C4.4(C2xA5), (C2xA5).2C4, (C4xA5).4C2, SmallGroup(480,220)

Series: ChiefDerived Lower central Upper central

C1C2C4C8 — C8xA5
A5 — C8xA5
A5 — C8xA5
C1C8

Subgroups: 374 in 48 conjugacy classes, 8 normal (all characteristic)
Quotients: C1, C2, C4, C8, A5, C2xA5, C4xA5, C8xA5
15C2
15C2
10C3
6C5
5C22
15C22
15C4
15C22
10C6
10S3
10S3
6D5
6D5
6C10
5C23
15C2xC4
15C2xC4
15C8
5A4
10C12
10D6
10Dic3
6Dic5
6C20
6D10
5C22xC4
15C2xC8
15C2xC8
5C2xA4
10C24
10C4xS3
10C3:C8
6C40
6C5:2C8
6C4xD5
5C22xC8
5C4xA4
10S3xC8
6C8xD5
5C8xA4

Smallest permutation representation of C8xA5
On 40 points
Generators in S40
(1 33 6 38 11 23 16 28)(2 26 7 31 12 36 17 21)(3 35 8 40 13 25 18 30)(4 32 9 37 14 22 19 27)(5 29 10 34 15 39 20 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,33,6,38,11,23,16,28)(2,26,7,31,12,36,17,21)(3,35,8,40,13,25,18,30)(4,32,9,37,14,22,19,27)(5,29,10,34,15,39,20,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)>;

G:=Group( (1,33,6,38,11,23,16,28)(2,26,7,31,12,36,17,21)(3,35,8,40,13,25,18,30)(4,32,9,37,14,22,19,27)(5,29,10,34,15,39,20,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,33,6,38,11,23,16,28),(2,26,7,31,12,36,17,21),(3,35,8,40,13,25,18,30),(4,32,9,37,14,22,19,27),(5,29,10,34,15,39,20,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)]])

40 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B 6 8A8B8C8D8E8F8G8H10A10B12A12B20A20B20C20D24A24B24C24D40A···40H
order1222344445568888888810101212202020202424242440···40
size1115152011151512122011111515151512122020121212122020202012···12

40 irreducible representations

dim1111333344445555
type++++++++
imageC1C2C4C8A5C2xA5C4xA5C8xA5A5C2xA5C4xA5C8xA5A5C2xA5C4xA5C8xA5
kernelC8xA5C4xA5C2xA5A5C8C4C2C1C8C4C2C1C8C4C2C1
# reps1124224811241124

Matrix representation of C8xA5 in GL4(F241) generated by

211000
06400
01883410
018253207
,
177000
018221097
023300
0972317
G:=sub<GL(4,GF(241))| [211,0,0,0,0,64,188,182,0,0,34,53,0,0,10,207],[177,0,0,0,0,182,233,97,0,210,0,231,0,97,0,7] >;

C8xA5 in GAP, Magma, Sage, TeX

C_8\times A_5
% in TeX

G:=Group("C8xA5");
// GroupNames label

G:=SmallGroup(480,220);
// by ID

G=gap.SmallGroup(480,220);
# by ID

Export

Subgroup lattice of C8xA5 in TeX

׿
x
:
Z
F
o
wr
Q
<