extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10)⋊1(C2×Dic3) = C2×A4⋊F5 | φ: C2×Dic3/C2 → Dic3 ⊆ Aut C2×C10 | 30 | 12+ | (C2xC10):1(C2xDic3) | 480,1191 |
(C2×C10)⋊2(C2×Dic3) = D5×A4⋊C4 | φ: C2×Dic3/C2 → D6 ⊆ Aut C2×C10 | 60 | 6 | (C2xC10):2(C2xDic3) | 480,979 |
(C2×C10)⋊3(C2×Dic3) = D4×C3⋊F5 | φ: C2×Dic3/C3 → C2×C4 ⊆ Aut C2×C10 | 60 | 8 | (C2xC10):3(C2xDic3) | 480,1067 |
(C2×C10)⋊4(C2×Dic3) = C10×A4⋊C4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C2×C10 | 120 | | (C2xC10):4(C2xDic3) | 480,1022 |
(C2×C10)⋊5(C2×Dic3) = C2×A4⋊Dic5 | φ: C2×Dic3/C22 → S3 ⊆ Aut C2×C10 | 120 | | (C2xC10):5(C2xDic3) | 480,1033 |
(C2×C10)⋊6(C2×Dic3) = C2×D10.D6 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | | (C2xC10):6(C2xDic3) | 480,1072 |
(C2×C10)⋊7(C2×Dic3) = C23×C3⋊F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | | (C2xC10):7(C2xDic3) | 480,1206 |
(C2×C10)⋊8(C2×Dic3) = D5×C6.D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 120 | | (C2xC10):8(C2xDic3) | 480,623 |
(C2×C10)⋊9(C2×Dic3) = Dic15⋊16D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10):9(C2xDic3) | 480,635 |
(C2×C10)⋊10(C2×Dic3) = D4×Dic15 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10):10(C2xDic3) | 480,899 |
(C2×C10)⋊11(C2×Dic3) = C5×D4×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):11(C2xDic3) | 480,813 |
(C2×C10)⋊12(C2×Dic3) = Dic3×C5⋊D4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):12(C2xDic3) | 480,629 |
(C2×C10)⋊13(C2×Dic3) = C22×D5×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):13(C2xDic3) | 480,1112 |
(C2×C10)⋊14(C2×Dic3) = C10×C6.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):14(C2xDic3) | 480,831 |
(C2×C10)⋊15(C2×Dic3) = C2×C30.38D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):15(C2xDic3) | 480,917 |
(C2×C10)⋊16(C2×Dic3) = C23×Dic15 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10):16(C2xDic3) | 480,1178 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).(C2×Dic3) = Dic10.Dic3 | φ: C2×Dic3/C3 → C2×C4 ⊆ Aut C2×C10 | 240 | 8 | (C2xC10).(C2xDic3) | 480,1066 |
(C2×C10).2(C2×Dic3) = (C2×C60)⋊C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).2(C2xDic3) | 480,304 |
(C2×C10).3(C2×Dic3) = C4×C15⋊C8 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 480 | | (C2xC10).3(C2xDic3) | 480,305 |
(C2×C10).4(C2×Dic3) = C60⋊C8 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 480 | | (C2xC10).4(C2xDic3) | 480,306 |
(C2×C10).5(C2×Dic3) = C30.11C42 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 480 | | (C2xC10).5(C2xDic3) | 480,307 |
(C2×C10).6(C2×Dic3) = C30.7M4(2) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | | (C2xC10).6(C2xDic3) | 480,308 |
(C2×C10).7(C2×Dic3) = Dic5.13D12 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 480 | | (C2xC10).7(C2xDic3) | 480,309 |
(C2×C10).8(C2×Dic3) = (C2×C60).C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).8(C2xDic3) | 480,310 |
(C2×C10).9(C2×Dic3) = D10.10D12 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | | (C2xC10).9(C2xDic3) | 480,311 |
(C2×C10).10(C2×Dic3) = C3⋊(C23⋊F5) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).10(C2xDic3) | 480,316 |
(C2×C10).11(C2×Dic3) = C30.22M4(2) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | | (C2xC10).11(C2xDic3) | 480,317 |
(C2×C10).12(C2×Dic3) = C5⋊(C12.D4) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).12(C2xDic3) | 480,318 |
(C2×C10).13(C2×Dic3) = C2×C60.C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | | (C2xC10).13(C2xDic3) | 480,1060 |
(C2×C10).14(C2×Dic3) = C2×C12.F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | | (C2xC10).14(C2xDic3) | 480,1061 |
(C2×C10).15(C2×Dic3) = C60.59(C2×C4) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).15(C2xDic3) | 480,1062 |
(C2×C10).16(C2×Dic3) = C2×C4×C3⋊F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | | (C2xC10).16(C2xDic3) | 480,1063 |
(C2×C10).17(C2×Dic3) = C2×C60⋊C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | | (C2xC10).17(C2xDic3) | 480,1064 |
(C2×C10).18(C2×Dic3) = (C2×C12)⋊6F5 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).18(C2xDic3) | 480,1065 |
(C2×C10).19(C2×Dic3) = C22×C15⋊C8 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 480 | | (C2xC10).19(C2xDic3) | 480,1070 |
(C2×C10).20(C2×Dic3) = C2×C15⋊8M4(2) | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C10 | 240 | | (C2xC10).20(C2xDic3) | 480,1071 |
(C2×C10).21(C2×Dic3) = C60.28D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).21(C2xDic3) | 480,34 |
(C2×C10).22(C2×Dic3) = C12.6D20 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).22(C2xDic3) | 480,37 |
(C2×C10).23(C2×Dic3) = (C2×C6).D20 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).23(C2xDic3) | 480,71 |
(C2×C10).24(C2×Dic3) = D5×C4.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).24(C2xDic3) | 480,358 |
(C2×C10).25(C2×Dic3) = D20.2Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).25(C2xDic3) | 480,360 |
(C2×C10).26(C2×Dic3) = (C6×Dic5)⋊7C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10).26(C2xDic3) | 480,604 |
(C2×C10).27(C2×Dic3) = D4.Dic15 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).27(C2xDic3) | 480,913 |
(C2×C10).28(C2×Dic3) = C5×D4.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).28(C2xDic3) | 480,827 |
(C2×C10).29(C2×Dic3) = Dic5×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).29(C2xDic3) | 480,25 |
(C2×C10).30(C2×Dic3) = C30.21C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).30(C2xDic3) | 480,28 |
(C2×C10).31(C2×Dic3) = C60.93D4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).31(C2xDic3) | 480,31 |
(C2×C10).32(C2×Dic3) = C60.13Q8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).32(C2xDic3) | 480,58 |
(C2×C10).33(C2×Dic3) = C30.24C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).33(C2xDic3) | 480,70 |
(C2×C10).34(C2×Dic3) = C2×D5×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).34(C2xDic3) | 480,357 |
(C2×C10).35(C2×Dic3) = D20.3Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).35(C2xDic3) | 480,359 |
(C2×C10).36(C2×Dic3) = C2×C20.32D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).36(C2xDic3) | 480,369 |
(C2×C10).37(C2×Dic3) = C2×Dic3×Dic5 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).37(C2xDic3) | 480,603 |
(C2×C10).38(C2×Dic3) = C2×D10⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).38(C2xDic3) | 480,611 |
(C2×C10).39(C2×Dic3) = C2×C30.Q8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).39(C2xDic3) | 480,617 |
(C2×C10).40(C2×Dic3) = C5×C12.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).40(C2xDic3) | 480,152 |
(C2×C10).41(C2×Dic3) = C5×C23.7D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).41(C2xDic3) | 480,153 |
(C2×C10).42(C2×Dic3) = C5×C12.10D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).42(C2xDic3) | 480,155 |
(C2×C10).43(C2×Dic3) = C10×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).43(C2xDic3) | 480,800 |
(C2×C10).44(C2×Dic3) = C5×C23.26D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).44(C2xDic3) | 480,805 |
(C2×C10).45(C2×Dic3) = C4×C15⋊3C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).45(C2xDic3) | 480,162 |
(C2×C10).46(C2×Dic3) = C42.D15 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).46(C2xDic3) | 480,163 |
(C2×C10).47(C2×Dic3) = C60⋊5C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).47(C2xDic3) | 480,164 |
(C2×C10).48(C2×Dic3) = C60.212D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).48(C2xDic3) | 480,190 |
(C2×C10).49(C2×Dic3) = C30.29C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).49(C2xDic3) | 480,191 |
(C2×C10).50(C2×Dic3) = C60.8D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).50(C2xDic3) | 480,193 |
(C2×C10).51(C2×Dic3) = C23.7D30 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).51(C2xDic3) | 480,194 |
(C2×C10).52(C2×Dic3) = C60.10D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).52(C2xDic3) | 480,196 |
(C2×C10).53(C2×Dic3) = C22×C15⋊3C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).53(C2xDic3) | 480,885 |
(C2×C10).54(C2×Dic3) = C2×C60.7C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).54(C2xDic3) | 480,886 |
(C2×C10).55(C2×Dic3) = C2×C4×Dic15 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).55(C2xDic3) | 480,887 |
(C2×C10).56(C2×Dic3) = C2×C60⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).56(C2xDic3) | 480,890 |
(C2×C10).57(C2×Dic3) = C23.26D30 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).57(C2xDic3) | 480,891 |
(C2×C10).58(C2×Dic3) = C20×C3⋊C8 | central extension (φ=1) | 480 | | (C2xC10).58(C2xDic3) | 480,121 |
(C2×C10).59(C2×Dic3) = C5×C42.S3 | central extension (φ=1) | 480 | | (C2xC10).59(C2xDic3) | 480,122 |
(C2×C10).60(C2×Dic3) = C5×C12⋊C8 | central extension (φ=1) | 480 | | (C2xC10).60(C2xDic3) | 480,123 |
(C2×C10).61(C2×Dic3) = C5×C12.55D4 | central extension (φ=1) | 240 | | (C2xC10).61(C2xDic3) | 480,149 |
(C2×C10).62(C2×Dic3) = C5×C6.C42 | central extension (φ=1) | 480 | | (C2xC10).62(C2xDic3) | 480,150 |
(C2×C10).63(C2×Dic3) = C2×C10×C3⋊C8 | central extension (φ=1) | 480 | | (C2xC10).63(C2xDic3) | 480,799 |
(C2×C10).64(C2×Dic3) = Dic3×C2×C20 | central extension (φ=1) | 480 | | (C2xC10).64(C2xDic3) | 480,801 |
(C2×C10).65(C2×Dic3) = C10×C4⋊Dic3 | central extension (φ=1) | 480 | | (C2xC10).65(C2xDic3) | 480,804 |