# Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C3×D5

Direct product G=N×Q with N=C4○D4 and Q=C3×D5
dρLabelID
C3×D5×C4○D41204C3xD5xC4oD4480,1145

Semidirect products G=N:Q with N=C4○D4 and Q=C3×D5
extensionφ:Q→Out NdρLabelID
C4○D4⋊(C3×D5) = D20.A4φ: C3×D5/C5C6 ⊆ Out C4○D4804-C4oD4:(C3xD5)480,1043
C4○D42(C3×D5) = D5×C4.A4φ: C3×D5/D5C3 ⊆ Out C4○D4804C4oD4:2(C3xD5)480,1042
C4○D43(C3×D5) = C3×D4⋊D10φ: C3×D5/C15C2 ⊆ Out C4○D41204C4oD4:3(C3xD5)480,742
C4○D44(C3×D5) = C3×D4.8D10φ: C3×D5/C15C2 ⊆ Out C4○D42404C4oD4:4(C3xD5)480,743
C4○D45(C3×D5) = C3×D48D10φ: C3×D5/C15C2 ⊆ Out C4○D41204C4oD4:5(C3xD5)480,1146
C4○D46(C3×D5) = C3×D4.10D10φ: C3×D5/C15C2 ⊆ Out C4○D42404C4oD4:6(C3xD5)480,1147

Non-split extensions G=N.Q with N=C4○D4 and Q=C3×D5
extensionφ:Q→Out NdρLabelID
C4○D4.(C3×D5) = Dic10.A4φ: C3×D5/C5C6 ⊆ Out C4○D41204+C4oD4.(C3xD5)480,1041
C4○D4.2(C3×D5) = SL2(𝔽3).Dic5φ: C3×D5/D5C3 ⊆ Out C4○D41604C4oD4.2(C3xD5)480,267
C4○D4.3(C3×D5) = C3×D42Dic5φ: C3×D5/C15C2 ⊆ Out C4○D41204C4oD4.3(C3xD5)480,115
C4○D4.4(C3×D5) = C3×D4.9D10φ: C3×D5/C15C2 ⊆ Out C4○D42404C4oD4.4(C3xD5)480,744
C4○D4.5(C3×D5) = C3×D4.Dic5φ: trivial image2404C4oD4.5(C3xD5)480,741

׿
×
𝔽