Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=C2×C4

Direct product G=N×Q with N=C5×Dic3 and Q=C2×C4
dρLabelID
Dic3×C2×C20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C5×Dic3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1(C2×C4) = F5×C3⋊D4φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic3608(C5xDic3):1(C2xC4)480,1010
(C5×Dic3)⋊2(C2×C4) = C3⋊D4⋊F5φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic3608(C5xDic3):2(C2xC4)480,1012
(C5×Dic3)⋊3(C2×C4) = C4×S3×F5φ: C2×C4/C2C4 ⊆ Out C5×Dic3608(C5xDic3):3(C2xC4)480,994
(C5×Dic3)⋊4(C2×C4) = S3×C4⋊F5φ: C2×C4/C2C4 ⊆ Out C5×Dic3608(C5xDic3):4(C2xC4)480,996
(C5×Dic3)⋊5(C2×C4) = C2×Dic3×F5φ: C2×C4/C2C4 ⊆ Out C5×Dic3120(C5xDic3):5(C2xC4)480,998
(C5×Dic3)⋊6(C2×C4) = C2×Dic3⋊F5φ: C2×C4/C2C4 ⊆ Out C5×Dic3120(C5xDic3):6(C2xC4)480,1001
(C5×Dic3)⋊7(C2×C4) = D5×Dic3⋊C4φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):7(C2xC4)480,468
(C5×Dic3)⋊8(C2×C4) = Dic1513D4φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):8(C2xC4)480,472
(C5×Dic3)⋊9(C2×C4) = D30.Q8φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):9(C2xC4)480,480
(C5×Dic3)⋊10(C2×C4) = C1520(C4×D4)φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):10(C2xC4)480,520
(C5×Dic3)⋊11(C2×C4) = Dic5×C3⋊D4φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):11(C2xC4)480,627
(C5×Dic3)⋊12(C2×C4) = Dic1517D4φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):12(C2xC4)480,636
(C5×Dic3)⋊13(C2×C4) = C4×D5×Dic3φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):13(C2xC4)480,467
(C5×Dic3)⋊14(C2×C4) = Dic34D20φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):14(C2xC4)480,471
(C5×Dic3)⋊15(C2×C4) = C4×D30.C2φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):15(C2xC4)480,477
(C5×Dic3)⋊16(C2×C4) = C4×C3⋊D20φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):16(C2xC4)480,519
(C5×Dic3)⋊17(C2×C4) = C5×Dic34D4φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):17(C2xC4)480,760
(C5×Dic3)⋊18(C2×C4) = C20×C3⋊D4φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):18(C2xC4)480,807
(C5×Dic3)⋊19(C2×C4) = C4×S3×Dic5φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):19(C2xC4)480,473
(C5×Dic3)⋊20(C2×C4) = S3×C4⋊Dic5φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):20(C2xC4)480,502
(C5×Dic3)⋊21(C2×C4) = C2×Dic3×Dic5φ: C2×C4/C22C2 ⊆ Out C5×Dic3480(C5xDic3):21(C2xC4)480,603
(C5×Dic3)⋊22(C2×C4) = C2×C6.Dic10φ: C2×C4/C22C2 ⊆ Out C5×Dic3480(C5xDic3):22(C2xC4)480,621
(C5×Dic3)⋊23(C2×C4) = C5×S3×C4⋊C4φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):23(C2xC4)480,770
(C5×Dic3)⋊24(C2×C4) = C10×Dic3⋊C4φ: C2×C4/C22C2 ⊆ Out C5×Dic3480(C5xDic3):24(C2xC4)480,802
(C5×Dic3)⋊25(C2×C4) = S3×C4×C20φ: trivial image240(C5xDic3):25(C2xC4)480,750

Non-split extensions G=N.Q with N=C5×Dic3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1(C2×C4) = F5×Dic6φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic31208-(C5xDic3).1(C2xC4)480,982
(C5×Dic3).2(C2×C4) = Dic65F5φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic31208-(C5xDic3).2(C2xC4)480,984
(C5×Dic3).3(C2×C4) = D60.C4φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic32408+(C5xDic3).3(C2xC4)480,990
(C5×Dic3).4(C2×C4) = Dic6.F5φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic32408+(C5xDic3).4(C2xC4)480,992
(C5×Dic3).5(C2×C4) = C5⋊C8.D6φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic32408(C5xDic3).5(C2xC4)480,1003
(C5×Dic3).6(C2×C4) = D15⋊C8⋊C2φ: C2×C4/C1C2×C4 ⊆ Out C5×Dic32408(C5xDic3).6(C2xC4)480,1005
(C5×Dic3).7(C2×C4) = C4⋊F53S3φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).7(C2xC4)480,983
(C5×Dic3).8(C2×C4) = (C4×S3)⋊F5φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).8(C2xC4)480,985
(C5×Dic3).9(C2×C4) = S3×D5⋊C8φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).9(C2xC4)480,986
(C5×Dic3).10(C2×C4) = S3×C4.F5φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).10(C2xC4)480,988
(C5×Dic3).11(C2×C4) = D15⋊M4(2)φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).11(C2xC4)480,991
(C5×Dic3).12(C2×C4) = C5⋊C8⋊D6φ: C2×C4/C2C4 ⊆ Out C5×Dic31208(C5xDic3).12(C2xC4)480,993
(C5×Dic3).13(C2×C4) = C22⋊F5.S3φ: C2×C4/C2C4 ⊆ Out C5×Dic31208-(C5xDic3).13(C2xC4)480,999
(C5×Dic3).14(C2×C4) = C2×D15⋊C8φ: C2×C4/C2C4 ⊆ Out C5×Dic3240(C5xDic3).14(C2xC4)480,1006
(C5×Dic3).15(C2×C4) = D152M4(2)φ: C2×C4/C2C4 ⊆ Out C5×Dic31208+(C5xDic3).15(C2xC4)480,1007
(C5×Dic3).16(C2×C4) = C2×Dic3.F5φ: C2×C4/C2C4 ⊆ Out C5×Dic3240(C5xDic3).16(C2xC4)480,1009
(C5×Dic3).17(C2×C4) = D5×C8⋊S3φ: C2×C4/C2C22 ⊆ Out C5×Dic31204(C5xDic3).17(C2xC4)480,320
(C5×Dic3).18(C2×C4) = C40⋊D6φ: C2×C4/C2C22 ⊆ Out C5×Dic31204(C5xDic3).18(C2xC4)480,322
(C5×Dic3).19(C2×C4) = C40.34D6φ: C2×C4/C2C22 ⊆ Out C5×Dic32404(C5xDic3).19(C2xC4)480,342
(C5×Dic3).20(C2×C4) = C40.35D6φ: C2×C4/C2C22 ⊆ Out C5×Dic32404(C5xDic3).20(C2xC4)480,344
(C5×Dic3).21(C2×C4) = D12.2Dic5φ: C2×C4/C2C22 ⊆ Out C5×Dic32404(C5xDic3).21(C2xC4)480,362
(C5×Dic3).22(C2×C4) = D12.Dic5φ: C2×C4/C2C22 ⊆ Out C5×Dic32404(C5xDic3).22(C2xC4)480,364
(C5×Dic3).23(C2×C4) = Dic55Dic6φ: C2×C4/C2C22 ⊆ Out C5×Dic3480(C5xDic3).23(C2xC4)480,399
(C5×Dic3).24(C2×C4) = Dic155Q8φ: C2×C4/C2C22 ⊆ Out C5×Dic3480(C5xDic3).24(C2xC4)480,401
(C5×Dic3).25(C2×C4) = Dic5×Dic6φ: C2×C4/C2C22 ⊆ Out C5×Dic3480(C5xDic3).25(C2xC4)480,408
(C5×Dic3).26(C2×C4) = Dic157Q8φ: C2×C4/C2C22 ⊆ Out C5×Dic3480(C5xDic3).26(C2xC4)480,420
(C5×Dic3).27(C2×C4) = D10.19(C4×S3)φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).27(C2xC4)480,470
(C5×Dic3).28(C2×C4) = D30.C2⋊C4φ: C2×C4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).28(C2xC4)480,478
(C5×Dic3).29(C2×C4) = S3×C8×D5φ: C2×C4/C4C2 ⊆ Out C5×Dic31204(C5xDic3).29(C2xC4)480,319
(C5×Dic3).30(C2×C4) = S3×C8⋊D5φ: C2×C4/C4C2 ⊆ Out C5×Dic31204(C5xDic3).30(C2xC4)480,321
(C5×Dic3).31(C2×C4) = C40.54D6φ: C2×C4/C4C2 ⊆ Out C5×Dic32404(C5xDic3).31(C2xC4)480,341
(C5×Dic3).32(C2×C4) = C40.55D6φ: C2×C4/C4C2 ⊆ Out C5×Dic32404(C5xDic3).32(C2xC4)480,343
(C5×Dic3).33(C2×C4) = Dic35Dic10φ: C2×C4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).33(C2xC4)480,400
(C5×Dic3).34(C2×C4) = (D5×Dic3)⋊C4φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3).34(C2xC4)480,469
(C5×Dic3).35(C2×C4) = D30.23(C2×C4)φ: C2×C4/C4C2 ⊆ Out C5×Dic3240(C5xDic3).35(C2xC4)480,479
(C5×Dic3).36(C2×C4) = C4×C15⋊Q8φ: C2×C4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).36(C2xC4)480,543
(C5×Dic3).37(C2×C4) = C20×Dic6φ: C2×C4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).37(C2xC4)480,747
(C5×Dic3).38(C2×C4) = C5×Dic6⋊C4φ: C2×C4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).38(C2xC4)480,766
(C5×Dic3).39(C2×C4) = C5×C8○D12φ: C2×C4/C4C2 ⊆ Out C5×Dic32402(C5xDic3).39(C2xC4)480,780
(C5×Dic3).40(C2×C4) = C5×D12.C4φ: C2×C4/C4C2 ⊆ Out C5×Dic32404(C5xDic3).40(C2xC4)480,786
(C5×Dic3).41(C2×C4) = C2×S3×C52C8φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).41(C2xC4)480,361
(C5×Dic3).42(C2×C4) = S3×C4.Dic5φ: C2×C4/C22C2 ⊆ Out C5×Dic31204(C5xDic3).42(C2xC4)480,363
(C5×Dic3).43(C2×C4) = C2×D6.Dic5φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).43(C2xC4)480,370
(C5×Dic3).44(C2×C4) = (S3×C20)⋊5C4φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).44(C2xC4)480,414
(C5×Dic3).45(C2×C4) = (S3×C20)⋊7C4φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).45(C2xC4)480,447
(C5×Dic3).46(C2×C4) = C23.26(S3×D5)φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).46(C2xC4)480,605
(C5×Dic3).47(C2×C4) = C5×C422S3φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).47(C2xC4)480,751
(C5×Dic3).48(C2×C4) = C5×C23.16D6φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).48(C2xC4)480,756
(C5×Dic3).49(C2×C4) = C10×C8⋊S3φ: C2×C4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).49(C2xC4)480,779
(C5×Dic3).50(C2×C4) = C5×S3×M4(2)φ: C2×C4/C22C2 ⊆ Out C5×Dic31204(C5xDic3).50(C2xC4)480,785
(C5×Dic3).51(C2×C4) = C5×C4⋊C47S3φ: trivial image240(C5xDic3).51(C2xC4)480,771
(C5×Dic3).52(C2×C4) = S3×C2×C40φ: trivial image240(C5xDic3).52(C2xC4)480,778

׿
×
𝔽