extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3)⋊1(C2×C4) = F5×C3⋊D4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 60 | 8 | (C5xDic3):1(C2xC4) | 480,1010 |
(C5×Dic3)⋊2(C2×C4) = C3⋊D4⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 60 | 8 | (C5xDic3):2(C2xC4) | 480,1012 |
(C5×Dic3)⋊3(C2×C4) = C4×S3×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 60 | 8 | (C5xDic3):3(C2xC4) | 480,994 |
(C5×Dic3)⋊4(C2×C4) = S3×C4⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 60 | 8 | (C5xDic3):4(C2xC4) | 480,996 |
(C5×Dic3)⋊5(C2×C4) = C2×Dic3×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):5(C2xC4) | 480,998 |
(C5×Dic3)⋊6(C2×C4) = C2×Dic3⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | | (C5xDic3):6(C2xC4) | 480,1001 |
(C5×Dic3)⋊7(C2×C4) = D5×Dic3⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):7(C2xC4) | 480,468 |
(C5×Dic3)⋊8(C2×C4) = Dic15⋊13D4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):8(C2xC4) | 480,472 |
(C5×Dic3)⋊9(C2×C4) = D30.Q8 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):9(C2xC4) | 480,480 |
(C5×Dic3)⋊10(C2×C4) = C15⋊20(C4×D4) | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):10(C2xC4) | 480,520 |
(C5×Dic3)⋊11(C2×C4) = Dic5×C3⋊D4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):11(C2xC4) | 480,627 |
(C5×Dic3)⋊12(C2×C4) = Dic15⋊17D4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):12(C2xC4) | 480,636 |
(C5×Dic3)⋊13(C2×C4) = C4×D5×Dic3 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):13(C2xC4) | 480,467 |
(C5×Dic3)⋊14(C2×C4) = Dic3⋊4D20 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):14(C2xC4) | 480,471 |
(C5×Dic3)⋊15(C2×C4) = C4×D30.C2 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):15(C2xC4) | 480,477 |
(C5×Dic3)⋊16(C2×C4) = C4×C3⋊D20 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):16(C2xC4) | 480,519 |
(C5×Dic3)⋊17(C2×C4) = C5×Dic3⋊4D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):17(C2xC4) | 480,760 |
(C5×Dic3)⋊18(C2×C4) = C20×C3⋊D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):18(C2xC4) | 480,807 |
(C5×Dic3)⋊19(C2×C4) = C4×S3×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):19(C2xC4) | 480,473 |
(C5×Dic3)⋊20(C2×C4) = S3×C4⋊Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):20(C2xC4) | 480,502 |
(C5×Dic3)⋊21(C2×C4) = C2×Dic3×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3):21(C2xC4) | 480,603 |
(C5×Dic3)⋊22(C2×C4) = C2×C6.Dic10 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3):22(C2xC4) | 480,621 |
(C5×Dic3)⋊23(C2×C4) = C5×S3×C4⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3):23(C2xC4) | 480,770 |
(C5×Dic3)⋊24(C2×C4) = C10×Dic3⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3):24(C2xC4) | 480,802 |
(C5×Dic3)⋊25(C2×C4) = S3×C4×C20 | φ: trivial image | 240 | | (C5xDic3):25(C2xC4) | 480,750 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3).1(C2×C4) = F5×Dic6 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).1(C2xC4) | 480,982 |
(C5×Dic3).2(C2×C4) = Dic6⋊5F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).2(C2xC4) | 480,984 |
(C5×Dic3).3(C2×C4) = D60.C4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 240 | 8+ | (C5xDic3).3(C2xC4) | 480,990 |
(C5×Dic3).4(C2×C4) = Dic6.F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 240 | 8+ | (C5xDic3).4(C2xC4) | 480,992 |
(C5×Dic3).5(C2×C4) = C5⋊C8.D6 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 240 | 8 | (C5xDic3).5(C2xC4) | 480,1003 |
(C5×Dic3).6(C2×C4) = D15⋊C8⋊C2 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Dic3 | 240 | 8 | (C5xDic3).6(C2xC4) | 480,1005 |
(C5×Dic3).7(C2×C4) = C4⋊F5⋊3S3 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).7(C2xC4) | 480,983 |
(C5×Dic3).8(C2×C4) = (C4×S3)⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).8(C2xC4) | 480,985 |
(C5×Dic3).9(C2×C4) = S3×D5⋊C8 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).9(C2xC4) | 480,986 |
(C5×Dic3).10(C2×C4) = S3×C4.F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).10(C2xC4) | 480,988 |
(C5×Dic3).11(C2×C4) = D15⋊M4(2) | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).11(C2xC4) | 480,991 |
(C5×Dic3).12(C2×C4) = C5⋊C8⋊D6 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8 | (C5xDic3).12(C2xC4) | 480,993 |
(C5×Dic3).13(C2×C4) = C22⋊F5.S3 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8- | (C5xDic3).13(C2xC4) | 480,999 |
(C5×Dic3).14(C2×C4) = C2×D15⋊C8 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).14(C2xC4) | 480,1006 |
(C5×Dic3).15(C2×C4) = D15⋊2M4(2) | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 120 | 8+ | (C5xDic3).15(C2xC4) | 480,1007 |
(C5×Dic3).16(C2×C4) = C2×Dic3.F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).16(C2xC4) | 480,1009 |
(C5×Dic3).17(C2×C4) = D5×C8⋊S3 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).17(C2xC4) | 480,320 |
(C5×Dic3).18(C2×C4) = C40⋊D6 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).18(C2xC4) | 480,322 |
(C5×Dic3).19(C2×C4) = C40.34D6 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).19(C2xC4) | 480,342 |
(C5×Dic3).20(C2×C4) = C40.35D6 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).20(C2xC4) | 480,344 |
(C5×Dic3).21(C2×C4) = D12.2Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).21(C2xC4) | 480,362 |
(C5×Dic3).22(C2×C4) = D12.Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).22(C2xC4) | 480,364 |
(C5×Dic3).23(C2×C4) = Dic5⋊5Dic6 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).23(C2xC4) | 480,399 |
(C5×Dic3).24(C2×C4) = Dic15⋊5Q8 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).24(C2xC4) | 480,401 |
(C5×Dic3).25(C2×C4) = Dic5×Dic6 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).25(C2xC4) | 480,408 |
(C5×Dic3).26(C2×C4) = Dic15⋊7Q8 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).26(C2xC4) | 480,420 |
(C5×Dic3).27(C2×C4) = D10.19(C4×S3) | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).27(C2xC4) | 480,470 |
(C5×Dic3).28(C2×C4) = D30.C2⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).28(C2xC4) | 480,478 |
(C5×Dic3).29(C2×C4) = S3×C8×D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).29(C2xC4) | 480,319 |
(C5×Dic3).30(C2×C4) = S3×C8⋊D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).30(C2xC4) | 480,321 |
(C5×Dic3).31(C2×C4) = C40.54D6 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).31(C2xC4) | 480,341 |
(C5×Dic3).32(C2×C4) = C40.55D6 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).32(C2xC4) | 480,343 |
(C5×Dic3).33(C2×C4) = Dic3⋊5Dic10 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).33(C2xC4) | 480,400 |
(C5×Dic3).34(C2×C4) = (D5×Dic3)⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).34(C2xC4) | 480,469 |
(C5×Dic3).35(C2×C4) = D30.23(C2×C4) | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).35(C2xC4) | 480,479 |
(C5×Dic3).36(C2×C4) = C4×C15⋊Q8 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).36(C2xC4) | 480,543 |
(C5×Dic3).37(C2×C4) = C20×Dic6 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).37(C2xC4) | 480,747 |
(C5×Dic3).38(C2×C4) = C5×Dic6⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 480 | | (C5xDic3).38(C2xC4) | 480,766 |
(C5×Dic3).39(C2×C4) = C5×C8○D12 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | 2 | (C5xDic3).39(C2xC4) | 480,780 |
(C5×Dic3).40(C2×C4) = C5×D12.C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Dic3 | 240 | 4 | (C5xDic3).40(C2xC4) | 480,786 |
(C5×Dic3).41(C2×C4) = C2×S3×C5⋊2C8 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).41(C2xC4) | 480,361 |
(C5×Dic3).42(C2×C4) = S3×C4.Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).42(C2xC4) | 480,363 |
(C5×Dic3).43(C2×C4) = C2×D6.Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).43(C2xC4) | 480,370 |
(C5×Dic3).44(C2×C4) = (S3×C20)⋊5C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).44(C2xC4) | 480,414 |
(C5×Dic3).45(C2×C4) = (S3×C20)⋊7C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).45(C2xC4) | 480,447 |
(C5×Dic3).46(C2×C4) = C23.26(S3×D5) | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).46(C2xC4) | 480,605 |
(C5×Dic3).47(C2×C4) = C5×C42⋊2S3 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).47(C2xC4) | 480,751 |
(C5×Dic3).48(C2×C4) = C5×C23.16D6 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).48(C2xC4) | 480,756 |
(C5×Dic3).49(C2×C4) = C10×C8⋊S3 | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 240 | | (C5xDic3).49(C2xC4) | 480,779 |
(C5×Dic3).50(C2×C4) = C5×S3×M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C5×Dic3 | 120 | 4 | (C5xDic3).50(C2xC4) | 480,785 |
(C5×Dic3).51(C2×C4) = C5×C4⋊C4⋊7S3 | φ: trivial image | 240 | | (C5xDic3).51(C2xC4) | 480,771 |
(C5×Dic3).52(C2×C4) = S3×C2×C40 | φ: trivial image | 240 | | (C5xDic3).52(C2xC4) | 480,778 |