extension | φ:Q→Out N | d | ρ | Label | ID |
(C5xDic3).1D4 = C40:1D6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 4+ | (C5xDic3).1D4 | 480,329 |
(C5xDic3).2D4 = D40:S3 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).2D4 | 480,330 |
(C5xDic3).3D4 = Dic20:S3 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | 4 | (C5xDic3).3D4 | 480,339 |
(C5xDic3).4D4 = C40.2D6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | 4- | (C5xDic3).4D4 | 480,350 |
(C5xDic3).5D4 = Dic15:Q8 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 480 | | (C5xDic3).5D4 | 480,405 |
(C5xDic3).6D4 = D10:1Dic6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).6D4 | 480,497 |
(C5xDic3).7D4 = D10:2Dic6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).7D4 | 480,498 |
(C5xDic3).8D4 = D30:3Q8 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).8D4 | 480,500 |
(C5xDic3).9D4 = D30:4Q8 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).9D4 | 480,505 |
(C5xDic3).10D4 = (C2xDic6):D5 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).10D4 | 480,531 |
(C5xDic3).11D4 = S3xD4:D5 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 8+ | (C5xDic3).11D4 | 480,555 |
(C5xDic3).12D4 = S3xD4.D5 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 8- | (C5xDic3).12D4 | 480,561 |
(C5xDic3).13D4 = D20:10D6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 8- | (C5xDic3).13D4 | 480,570 |
(C5xDic3).14D4 = D12.9D10 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 8+ | (C5xDic3).14D4 | 480,572 |
(C5xDic3).15D4 = S3xQ8:D5 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 120 | 8+ | (C5xDic3).15D4 | 480,579 |
(C5xDic3).16D4 = S3xC5:Q16 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).16D4 | 480,585 |
(C5xDic3).17D4 = D20.28D6 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).17D4 | 480,594 |
(C5xDic3).18D4 = C60.44C23 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | 8+ | (C5xDic3).18D4 | 480,596 |
(C5xDic3).19D4 = C23.D5:S3 | φ: D4/C2 → C22 ⊆ Out C5xDic3 | 240 | | (C5xDic3).19D4 | 480,601 |
(C5xDic3).20D4 = S3xC40:C2 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).20D4 | 480,327 |
(C5xDic3).21D4 = S3xD40 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 120 | 4+ | (C5xDic3).21D4 | 480,328 |
(C5xDic3).22D4 = S3xDic20 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | 4- | (C5xDic3).22D4 | 480,338 |
(C5xDic3).23D4 = D6.1D20 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | 4 | (C5xDic3).23D4 | 480,348 |
(C5xDic3).24D4 = D40:7S3 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | 4- | (C5xDic3).24D4 | 480,349 |
(C5xDic3).25D4 = D120:5C2 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | 4+ | (C5xDic3).25D4 | 480,351 |
(C5xDic3).26D4 = Dic3.D20 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).26D4 | 480,429 |
(C5xDic3).27D4 = C20:4Dic6 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 480 | | (C5xDic3).27D4 | 480,545 |
(C5xDic3).28D4 = C5xC23.11D6 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).28D4 | 480,764 |
(C5xDic3).29D4 = C5xC12:Q8 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 480 | | (C5xDic3).29D4 | 480,767 |
(C5xDic3).30D4 = C5xS3xD8 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).30D4 | 480,789 |
(C5xDic3).31D4 = C5xS3xSD16 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).31D4 | 480,792 |
(C5xDic3).32D4 = C5xS3xQ16 | φ: D4/C4 → C2 ⊆ Out C5xDic3 | 240 | 4 | (C5xDic3).32D4 | 480,796 |
(C5xDic3).33D4 = D6:Dic10 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).33D4 | 480,428 |
(C5xDic3).34D4 = D60.C22 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 120 | 8+ | (C5xDic3).34D4 | 480,556 |
(C5xDic3).35D4 = C60.10C23 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).35D4 | 480,562 |
(C5xDic3).36D4 = D20.24D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).36D4 | 480,569 |
(C5xDic3).37D4 = C60.19C23 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8+ | (C5xDic3).37D4 | 480,571 |
(C5xDic3).38D4 = D12:D10 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 120 | 8+ | (C5xDic3).38D4 | 480,580 |
(C5xDic3).39D4 = Dic10.26D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).39D4 | 480,586 |
(C5xDic3).40D4 = D20.27D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8- | (C5xDic3).40D4 | 480,593 |
(C5xDic3).41D4 = Dic10.27D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 8+ | (C5xDic3).41D4 | 480,595 |
(C5xDic3).42D4 = (C2xC10):8Dic6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).42D4 | 480,651 |
(C5xDic3).43D4 = C5xDic3.D4 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).43D4 | 480,757 |
(C5xDic3).44D4 = C5xD6:Q8 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | | (C5xDic3).44D4 | 480,775 |
(C5xDic3).45D4 = C5xD8:S3 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).45D4 | 480,790 |
(C5xDic3).46D4 = C5xQ8:3D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 120 | 4 | (C5xDic3).46D4 | 480,793 |
(C5xDic3).47D4 = C5xD4.D6 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 4 | (C5xDic3).47D4 | 480,794 |
(C5xDic3).48D4 = C5xQ16:S3 | φ: D4/C22 → C2 ⊆ Out C5xDic3 | 240 | 4 | (C5xDic3).48D4 | 480,797 |
(C5xDic3).49D4 = C5xD8:3S3 | φ: trivial image | 240 | 4 | (C5xDic3).49D4 | 480,791 |
(C5xDic3).50D4 = C5xQ8.7D6 | φ: trivial image | 240 | 4 | (C5xDic3).50D4 | 480,795 |
(C5xDic3).51D4 = C5xD24:C2 | φ: trivial image | 240 | 4 | (C5xDic3).51D4 | 480,798 |