Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=D4

Direct product G=N×Q with N=C5×Dic3 and Q=D4
dρLabelID
C5×D4×Dic3240C5xD4xDic3480,813

Semidirect products G=N:Q with N=C5×Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1D4 = Dic3⋊D20φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):1D4480,485
(C5×Dic3)⋊2D4 = D302D4φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):2D4480,535
(C5×Dic3)⋊3D4 = (C6×D5)⋊D4φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):3D4480,625
(C5×Dic3)⋊4D4 = D307D4φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):4D4480,633
(C5×Dic3)⋊5D4 = Dic155D4φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3):5D4480,643
(C5×Dic3)⋊6D4 = Dic34D20φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):6D4480,471
(C5×Dic3)⋊7D4 = Dic3×D20φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):7D4480,501
(C5×Dic3)⋊8D4 = D6014C4φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):8D4480,504
(C5×Dic3)⋊9D4 = C12⋊D20φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):9D4480,534
(C5×Dic3)⋊10D4 = C5×C123D4φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3):10D4480,819
(C5×Dic3)⋊11D4 = C1517(C4×D4)φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):11D4480,517
(C5×Dic3)⋊12D4 = C1522(C4×D4)φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):12D4480,522
(C5×Dic3)⋊13D4 = D6⋊D20φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):13D4480,530
(C5×Dic3)⋊14D4 = Dic3×C5⋊D4φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):14D4480,629
(C5×Dic3)⋊15D4 = C1528(C4×D4)φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):15D4480,632
(C5×Dic3)⋊16D4 = (C2×C6)⋊D20φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):16D4480,645
(C5×Dic3)⋊17D4 = C5×Dic3⋊D4φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):17D4480,763
(C5×Dic3)⋊18D4 = C5×C23.14D6φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3):18D4480,818
(C5×Dic3)⋊19D4 = C5×Dic34D4φ: trivial image240(C5xDic3):19D4480,760
(C5×Dic3)⋊20D4 = C5×Dic35D4φ: trivial image240(C5xDic3):20D4480,772

Non-split extensions G=N.Q with N=C5×Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1D4 = C401D6φ: D4/C2C22 ⊆ Out C5×Dic31204+(C5xDic3).1D4480,329
(C5×Dic3).2D4 = D40⋊S3φ: D4/C2C22 ⊆ Out C5×Dic31204(C5xDic3).2D4480,330
(C5×Dic3).3D4 = Dic20⋊S3φ: D4/C2C22 ⊆ Out C5×Dic32404(C5xDic3).3D4480,339
(C5×Dic3).4D4 = C40.2D6φ: D4/C2C22 ⊆ Out C5×Dic32404-(C5xDic3).4D4480,350
(C5×Dic3).5D4 = Dic15⋊Q8φ: D4/C2C22 ⊆ Out C5×Dic3480(C5xDic3).5D4480,405
(C5×Dic3).6D4 = D101Dic6φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).6D4480,497
(C5×Dic3).7D4 = D102Dic6φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).7D4480,498
(C5×Dic3).8D4 = D303Q8φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).8D4480,500
(C5×Dic3).9D4 = D304Q8φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).9D4480,505
(C5×Dic3).10D4 = (C2×Dic6)⋊D5φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).10D4480,531
(C5×Dic3).11D4 = S3×D4⋊D5φ: D4/C2C22 ⊆ Out C5×Dic31208+(C5xDic3).11D4480,555
(C5×Dic3).12D4 = S3×D4.D5φ: D4/C2C22 ⊆ Out C5×Dic31208-(C5xDic3).12D4480,561
(C5×Dic3).13D4 = D2010D6φ: D4/C2C22 ⊆ Out C5×Dic31208-(C5xDic3).13D4480,570
(C5×Dic3).14D4 = D12.9D10φ: D4/C2C22 ⊆ Out C5×Dic31208+(C5xDic3).14D4480,572
(C5×Dic3).15D4 = S3×Q8⋊D5φ: D4/C2C22 ⊆ Out C5×Dic31208+(C5xDic3).15D4480,579
(C5×Dic3).16D4 = S3×C5⋊Q16φ: D4/C2C22 ⊆ Out C5×Dic32408-(C5xDic3).16D4480,585
(C5×Dic3).17D4 = D20.28D6φ: D4/C2C22 ⊆ Out C5×Dic32408-(C5xDic3).17D4480,594
(C5×Dic3).18D4 = C60.44C23φ: D4/C2C22 ⊆ Out C5×Dic32408+(C5xDic3).18D4480,596
(C5×Dic3).19D4 = C23.D5⋊S3φ: D4/C2C22 ⊆ Out C5×Dic3240(C5xDic3).19D4480,601
(C5×Dic3).20D4 = S3×C40⋊C2φ: D4/C4C2 ⊆ Out C5×Dic31204(C5xDic3).20D4480,327
(C5×Dic3).21D4 = S3×D40φ: D4/C4C2 ⊆ Out C5×Dic31204+(C5xDic3).21D4480,328
(C5×Dic3).22D4 = S3×Dic20φ: D4/C4C2 ⊆ Out C5×Dic32404-(C5xDic3).22D4480,338
(C5×Dic3).23D4 = D6.1D20φ: D4/C4C2 ⊆ Out C5×Dic32404(C5xDic3).23D4480,348
(C5×Dic3).24D4 = D407S3φ: D4/C4C2 ⊆ Out C5×Dic32404-(C5xDic3).24D4480,349
(C5×Dic3).25D4 = D1205C2φ: D4/C4C2 ⊆ Out C5×Dic32404+(C5xDic3).25D4480,351
(C5×Dic3).26D4 = Dic3.D20φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3).26D4480,429
(C5×Dic3).27D4 = C204Dic6φ: D4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).27D4480,545
(C5×Dic3).28D4 = C5×C23.11D6φ: D4/C4C2 ⊆ Out C5×Dic3240(C5xDic3).28D4480,764
(C5×Dic3).29D4 = C5×C12⋊Q8φ: D4/C4C2 ⊆ Out C5×Dic3480(C5xDic3).29D4480,767
(C5×Dic3).30D4 = C5×S3×D8φ: D4/C4C2 ⊆ Out C5×Dic31204(C5xDic3).30D4480,789
(C5×Dic3).31D4 = C5×S3×SD16φ: D4/C4C2 ⊆ Out C5×Dic31204(C5xDic3).31D4480,792
(C5×Dic3).32D4 = C5×S3×Q16φ: D4/C4C2 ⊆ Out C5×Dic32404(C5xDic3).32D4480,796
(C5×Dic3).33D4 = D6⋊Dic10φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).33D4480,428
(C5×Dic3).34D4 = D60.C22φ: D4/C22C2 ⊆ Out C5×Dic31208+(C5xDic3).34D4480,556
(C5×Dic3).35D4 = C60.10C23φ: D4/C22C2 ⊆ Out C5×Dic32408-(C5xDic3).35D4480,562
(C5×Dic3).36D4 = D20.24D6φ: D4/C22C2 ⊆ Out C5×Dic32408-(C5xDic3).36D4480,569
(C5×Dic3).37D4 = C60.19C23φ: D4/C22C2 ⊆ Out C5×Dic32408+(C5xDic3).37D4480,571
(C5×Dic3).38D4 = D12⋊D10φ: D4/C22C2 ⊆ Out C5×Dic31208+(C5xDic3).38D4480,580
(C5×Dic3).39D4 = Dic10.26D6φ: D4/C22C2 ⊆ Out C5×Dic32408-(C5xDic3).39D4480,586
(C5×Dic3).40D4 = D20.27D6φ: D4/C22C2 ⊆ Out C5×Dic32408-(C5xDic3).40D4480,593
(C5×Dic3).41D4 = Dic10.27D6φ: D4/C22C2 ⊆ Out C5×Dic32408+(C5xDic3).41D4480,595
(C5×Dic3).42D4 = (C2×C10)⋊8Dic6φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).42D4480,651
(C5×Dic3).43D4 = C5×Dic3.D4φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).43D4480,757
(C5×Dic3).44D4 = C5×D6⋊Q8φ: D4/C22C2 ⊆ Out C5×Dic3240(C5xDic3).44D4480,775
(C5×Dic3).45D4 = C5×D8⋊S3φ: D4/C22C2 ⊆ Out C5×Dic31204(C5xDic3).45D4480,790
(C5×Dic3).46D4 = C5×Q83D6φ: D4/C22C2 ⊆ Out C5×Dic31204(C5xDic3).46D4480,793
(C5×Dic3).47D4 = C5×D4.D6φ: D4/C22C2 ⊆ Out C5×Dic32404(C5xDic3).47D4480,794
(C5×Dic3).48D4 = C5×Q16⋊S3φ: D4/C22C2 ⊆ Out C5×Dic32404(C5xDic3).48D4480,797
(C5×Dic3).49D4 = C5×D83S3φ: trivial image2404(C5xDic3).49D4480,791
(C5×Dic3).50D4 = C5×Q8.7D6φ: trivial image2404(C5xDic3).50D4480,795
(C5×Dic3).51D4 = C5×D24⋊C2φ: trivial image2404(C5xDic3).51D4480,798

׿
×
𝔽