Extensions 1→N→G→Q→1 with N=C2xQ16 and Q=C2

Direct product G=NxQ with N=C2xQ16 and Q=C2
dρLabelID
C22xQ1664C2^2xQ1664,252

Semidirect products G=N:Q with N=C2xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ16):1C2 = C22:Q16φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):1C264,132
(C2xQ16):2C2 = D4.7D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):2C264,133
(C2xQ16):3C2 = Q8.D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):3C264,145
(C2xQ16):4C2 = C8.18D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):4C264,148
(C2xQ16):5C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):5C264,176
(C2xQ16):6C2 = C2xSD32φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):6C264,187
(C2xQ16):7C2 = C8.D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):7C264,151
(C2xQ16):8C2 = D4.5D4φ: C2/C1C2 ⊆ Out C2xQ16324-(C2xQ16):8C264,154
(C2xQ16):9C2 = C8.2D4φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):9C264,178
(C2xQ16):10C2 = Q32:C2φ: C2/C1C2 ⊆ Out C2xQ16324-(C2xQ16):10C264,191
(C2xQ16):11C2 = C2xC8.C22φ: C2/C1C2 ⊆ Out C2xQ1632(C2xQ16):11C264,255
(C2xQ16):12C2 = Q8oD8φ: C2/C1C2 ⊆ Out C2xQ16324-(C2xQ16):12C264,259
(C2xQ16):13C2 = C2xC4oD8φ: trivial image32(C2xQ16):13C264,253

Non-split extensions G=N.Q with N=C2xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ16).1C2 = C2.Q32φ: C2/C1C2 ⊆ Out C2xQ1664(C2xQ16).1C264,39
(C2xQ16).2C2 = C4:2Q16φ: C2/C1C2 ⊆ Out C2xQ1664(C2xQ16).2C264,143
(C2xQ16).3C2 = C4:Q16φ: C2/C1C2 ⊆ Out C2xQ1664(C2xQ16).3C264,175
(C2xQ16).4C2 = C2xQ32φ: C2/C1C2 ⊆ Out C2xQ1664(C2xQ16).4C264,188
(C2xQ16).5C2 = C8.17D4φ: C2/C1C2 ⊆ Out C2xQ16324-(C2xQ16).5C264,43
(C2xQ16).6C2 = Q16:C4φ: C2/C1C2 ⊆ Out C2xQ1664(C2xQ16).6C264,122
(C2xQ16).7C2 = C4xQ16φ: trivial image64(C2xQ16).7C264,120

׿
x
:
Z
F
o
wr
Q
<