p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8.12D4, C42.82C22, (C4×C8)⋊9C2, C4.4(C2×D4), (C2×Q16)⋊5C2, (C2×D8).3C2, (C2×C4).58D4, C4.4D4⋊4C2, (C2×SD16)⋊15C2, C2.18(C4○D8), C2.8(C4⋊1D4), (C2×C8).80C22, (C2×C4).120C23, (C2×D4).30C22, C22.116(C2×D4), (C2×Q8).26C22, SmallGroup(64,176)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.12D4
G = < a,b,c | a8=b4=1, c2=a4, ab=ba, cac-1=a3, cbc-1=a4b-1 >
Subgroups: 129 in 65 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C2×C8, D8, SD16, Q16, C2×D4, C2×Q8, C4×C8, C4.4D4, C2×D8, C2×SD16, C2×Q16, C8.12D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4⋊1D4, C4○D8, C8.12D4
Character table of C8.12D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | -√-2 | -√2 | √-2 | √2 | -√-2 | -√2 | √-2 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | 0 | √-2 | -√2 | √-2 | -√2 | -√-2 | √2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | √-2 | -√2 | -√-2 | √2 | √-2 | -√2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 0 | √-2 | √2 | √-2 | √2 | -√-2 | -√2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 0 | -√-2 | -√2 | -√-2 | -√2 | √-2 | √2 | √-2 | √2 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -√-2 | √2 | -√-2 | √2 | √-2 | -√2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | -√-2 | √2 | √-2 | -√2 | -√-2 | √2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | √-2 | √2 | -√-2 | -√2 | √-2 | √2 | -√-2 | -√2 | complex lifted from C4○D8 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27 9 23)(2 28 10 24)(3 29 11 17)(4 30 12 18)(5 31 13 19)(6 32 14 20)(7 25 15 21)(8 26 16 22)
(1 19 5 23)(2 22 6 18)(3 17 7 21)(4 20 8 24)(9 31 13 27)(10 26 14 30)(11 29 15 25)(12 32 16 28)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,9,23)(2,28,10,24)(3,29,11,17)(4,30,12,18)(5,31,13,19)(6,32,14,20)(7,25,15,21)(8,26,16,22), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,31,13,27)(10,26,14,30)(11,29,15,25)(12,32,16,28)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,9,23)(2,28,10,24)(3,29,11,17)(4,30,12,18)(5,31,13,19)(6,32,14,20)(7,25,15,21)(8,26,16,22), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,31,13,27)(10,26,14,30)(11,29,15,25)(12,32,16,28) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27,9,23),(2,28,10,24),(3,29,11,17),(4,30,12,18),(5,31,13,19),(6,32,14,20),(7,25,15,21),(8,26,16,22)], [(1,19,5,23),(2,22,6,18),(3,17,7,21),(4,20,8,24),(9,31,13,27),(10,26,14,30),(11,29,15,25),(12,32,16,28)]])
C8.12D4 is a maximal subgroup of
C42.410C23 C42.411C23 C42.533C23
C8.D4p: C8.30D8 C8.3D8 C8.21D8 C16⋊3D4 C8.7D8 C8.8D12 C8.8D20 C8.8D28 ...
C42.D2p: D8.5D4 Q16.5D4 C8.22SD16 C8.12SD16 C42.360D4 M4(2)⋊9D4 C42.308D4 C42.260D4 ...
(C2p×Q16)⋊C2: C42.387C23 Q16⋊4D4 Q16⋊12D4 C42.527C23 C42.530C23 C42.532C23 C24.28D4 C40.28D4 ...
(C2p×SD16)⋊C2: C42.385C23 SD16⋊2D4 SD16⋊10D4 C42.528C23 C42.531C23 C24.43D4 C40.43D4 C56.43D4 ...
C4p.(C2×D4): M4(2)⋊10D4 M4(2)⋊11D4 M4(2).20D4 D8⋊5D4 D8⋊12D4 D8○SD16 C24.22D4 C40.22D4 ...
C8.12D4 is a maximal quotient of
C42.D2p: C42.433D4 C8.8D12 C42.214D6 C8.8D20 C42.214D10 C8.8D28 C42.214D14 ...
(C2×D4).D2p: (C22×D8).C2 (C2×C8).41D4 C24.22D4 C24.43D4 C40.22D4 C40.43D4 C56.22D4 C56.43D4 ...
(C2×C8).D2p: C8⋊5D8 C8⋊5Q16 C82⋊12C2 C82⋊5C2 C8.7Q16 C82⋊3C2 C42.664C23 C42.665C23 ...
Matrix representation of C8.12D4 ►in GL4(𝔽17) generated by
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 13 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 13 |
G:=sub<GL(4,GF(17))| [12,12,0,0,5,12,0,0,0,0,12,12,0,0,5,12],[0,4,0,0,13,0,0,0,0,0,4,0,0,0,0,4],[0,13,0,0,13,0,0,0,0,0,4,0,0,0,0,13] >;
C8.12D4 in GAP, Magma, Sage, TeX
C_8._{12}D_4
% in TeX
G:=Group("C8.12D4");
// GroupNames label
G:=SmallGroup(64,176);
// by ID
G=gap.SmallGroup(64,176);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,230,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=1,c^2=a^4,a*b=b*a,c*a*c^-1=a^3,c*b*c^-1=a^4*b^-1>;
// generators/relations
Export