p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊1Q16, C8.8D4, C42.81C22, (C4×C8).7C2, C4.3(C2×D4), C4⋊Q8.9C2, (C2×C4).78D4, (C2×Q16).3C2, C2.10(C2×Q16), C2.7(C4⋊1D4), (C2×C8).79C22, (C2×C4).119C23, C22.115(C2×D4), (C2×Q8).25C22, SmallGroup(64,175)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊Q16
G = < a,b,c | a4=b8=1, c2=b4, ab=ba, cac-1=a-1, cbc-1=b-1 >
Subgroups: 97 in 61 conjugacy classes, 33 normal (7 characteristic)
C1, C2, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, C4⋊Q8, C2×Q16, C4⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4⋊1D4, C2×Q16, C4⋊Q16
Character table of C4⋊Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
(1 33 31 14)(2 34 32 15)(3 35 25 16)(4 36 26 9)(5 37 27 10)(6 38 28 11)(7 39 29 12)(8 40 30 13)(17 42 49 58)(18 43 50 59)(19 44 51 60)(20 45 52 61)(21 46 53 62)(22 47 54 63)(23 48 55 64)(24 41 56 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 45 5 41)(2 44 6 48)(3 43 7 47)(4 42 8 46)(9 49 13 53)(10 56 14 52)(11 55 15 51)(12 54 16 50)(17 40 21 36)(18 39 22 35)(19 38 23 34)(20 37 24 33)(25 59 29 63)(26 58 30 62)(27 57 31 61)(28 64 32 60)
G:=sub<Sym(64)| (1,33,31,14)(2,34,32,15)(3,35,25,16)(4,36,26,9)(5,37,27,10)(6,38,28,11)(7,39,29,12)(8,40,30,13)(17,42,49,58)(18,43,50,59)(19,44,51,60)(20,45,52,61)(21,46,53,62)(22,47,54,63)(23,48,55,64)(24,41,56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,45,5,41)(2,44,6,48)(3,43,7,47)(4,42,8,46)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,40,21,36)(18,39,22,35)(19,38,23,34)(20,37,24,33)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60)>;
G:=Group( (1,33,31,14)(2,34,32,15)(3,35,25,16)(4,36,26,9)(5,37,27,10)(6,38,28,11)(7,39,29,12)(8,40,30,13)(17,42,49,58)(18,43,50,59)(19,44,51,60)(20,45,52,61)(21,46,53,62)(22,47,54,63)(23,48,55,64)(24,41,56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,45,5,41)(2,44,6,48)(3,43,7,47)(4,42,8,46)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,40,21,36)(18,39,22,35)(19,38,23,34)(20,37,24,33)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60) );
G=PermutationGroup([[(1,33,31,14),(2,34,32,15),(3,35,25,16),(4,36,26,9),(5,37,27,10),(6,38,28,11),(7,39,29,12),(8,40,30,13),(17,42,49,58),(18,43,50,59),(19,44,51,60),(20,45,52,61),(21,46,53,62),(22,47,54,63),(23,48,55,64),(24,41,56,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,45,5,41),(2,44,6,48),(3,43,7,47),(4,42,8,46),(9,49,13,53),(10,56,14,52),(11,55,15,51),(12,54,16,50),(17,40,21,36),(18,39,22,35),(19,38,23,34),(20,37,24,33),(25,59,29,63),(26,58,30,62),(27,57,31,61),(28,64,32,60)]])
C4⋊Q16 is a maximal subgroup of
C8.25D8 C8.27D8 (C2×Q8).D4 D4⋊Q16 Q8⋊Q16 C42.195C23 C8.28D8 Q8⋊1Q16 C8.D8 C8.SD16 C82⋊5C2 C8.9SD16 C42.667C23 C8.2D8 D8.4D4 Q16.4D4 C8.5D8 C4.SD32 C8.14SD16 C16⋊5D4 C42.360D4 M4(2)⋊8D4 M4(2).20D4 C42.367D4 C42.389C23 C42.262D4 C42.267D4 C42.268D4 C42.409C23 SD16⋊3D4 D8⋊13D4 D4×Q16 D8○Q16 C42.527C23 Q8⋊6Q16 C42.73C23
C4p⋊Q16: C8⋊5Q16 C8⋊4Q16 C8⋊3Q16 C12⋊4Q16 C12⋊3Q16 C20⋊4Q16 C20⋊3Q16 C28⋊4Q16 ...
C8p.D4: C4⋊Q32 C8.7D8 C24.26D4 C40.26D4 C56.26D4 ...
C4⋊Q16 is a maximal quotient of
C4p⋊Q16: C8⋊5Q16 C8⋊4Q16 C8⋊3Q16 C12⋊4Q16 C12⋊3Q16 C20⋊4Q16 C20⋊3Q16 C28⋊4Q16 ...
(C2×C8).D2p: C8.7Q16 C42.59Q8 C42.431D4 (C2×C4)⋊6Q16 (C2×C4)⋊2Q16 (C2×C8).60D4 C24.26D4 C40.26D4 ...
Matrix representation of C4⋊Q16 ►in GL4(𝔽17) generated by
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 9 | 15 |
11 | 13 | 0 | 0 |
13 | 6 | 0 | 0 |
0 | 0 | 12 | 15 |
0 | 0 | 13 | 5 |
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,16,0,0,0,0,16],[0,16,0,0,1,0,0,0,0,0,8,9,0,0,0,15],[11,13,0,0,13,6,0,0,0,0,12,13,0,0,15,5] >;
C4⋊Q16 in GAP, Magma, Sage, TeX
C_4\rtimes Q_{16}
% in TeX
G:=Group("C4:Q16");
// GroupNames label
G:=SmallGroup(64,175);
// by ID
G=gap.SmallGroup(64,175);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,247,362,86,963,117]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=b^4,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export