Copied to
clipboard

G = D4.5D4order 64 = 26

5th non-split extension by D4 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4.5D4, C8.20D4, Q8.5D4, M4(2).5C22, (C2×Q16)⋊8C2, C8○D4.1C2, C4.60(C2×D4), C8.C22.C2, C8.C47C2, C4.10D44C2, (C2×C4).10C23, (C2×C8).19C22, C2.25(C4⋊D4), C4○D4.11C22, C22.8(C4○D4), (C2×Q8).16C22, SmallGroup(64,154)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D4.5D4
C1C2C4C2×C4C4○D4C8○D4 — D4.5D4
C1C2C2×C4 — D4.5D4
C1C2C2×C4 — D4.5D4
C1C2C2C2×C4 — D4.5D4

Generators and relations for D4.5D4
 G = < a,b,c,d | a4=b2=1, c4=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c3 >

2C2
4C2
2C4
2C22
4C4
4C4
2Q8
2C2×C4
2C2×C4
2Q8
2C8
2C8
2Q8
2C8
2C2×C4
2D4
2Q8
2Q16
2Q16
2SD16
2SD16
2Q16
2C2×C8
2M4(2)
2Q16

Character table of D4.5D4

 class 12A2B2C4A4B4C4D4E8A8B8C8D8E8F8G
 size 1124224882244488
ρ11111111111111111    trivial
ρ2111-111-1-1-1111-1-111    linear of order 2
ρ3111-111-11-1-1-1-1111-1    linear of order 2
ρ41111111-11-1-1-1-1-11-1    linear of order 2
ρ5111-111-111111-1-1-1-1    linear of order 2
ρ61111111-1-111111-1-1    linear of order 2
ρ711111111-1-1-1-1-1-1-11    linear of order 2
ρ8111-111-1-11-1-1-111-11    linear of order 2
ρ922-222-2-2000000000    orthogonal lifted from D4
ρ1022-2-22-22000000000    orthogonal lifted from D4
ρ1122-20-2200022-20000    orthogonal lifted from D4
ρ1222-20-22000-2-220000    orthogonal lifted from D4
ρ132220-2-2000000-2i2i00    complex lifted from C4○D4
ρ142220-2-20000002i-2i00    complex lifted from C4○D4
ρ154-40000000-222200000    symplectic faithful, Schur index 2
ρ164-4000000022-2200000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.5D4
On 32 points
Generators in S32
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 27 13 31)(10 28 14 32)(11 29 15 25)(12 30 16 26)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27 5 31)(2 26 6 30)(3 25 7 29)(4 32 8 28)(9 23 13 19)(10 22 14 18)(11 21 15 17)(12 20 16 24)

G:=sub<Sym(32)| (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,27,13,31)(10,28,14,32)(11,29,15,25)(12,30,16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,26,6,30)(3,25,7,29)(4,32,8,28)(9,23,13,19)(10,22,14,18)(11,21,15,17)(12,20,16,24)>;

G:=Group( (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,27,13,31)(10,28,14,32)(11,29,15,25)(12,30,16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,26,6,30)(3,25,7,29)(4,32,8,28)(9,23,13,19)(10,22,14,18)(11,21,15,17)(12,20,16,24) );

G=PermutationGroup([[(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,27,13,31),(10,28,14,32),(11,29,15,25),(12,30,16,26)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27,5,31),(2,26,6,30),(3,25,7,29),(4,32,8,28),(9,23,13,19),(10,22,14,18),(11,21,15,17),(12,20,16,24)]])

D4.5D4 is a maximal subgroup of
M4(2).10C23  C8.S4
 D4p.D4: D8.3D4  D8.12D4  D8.13D4  D8○SD16  D8○Q16  D12.7D4  C24.18D4  C24.29D4 ...
 M4(2).D2p: D4.4D8  D4.5D8  M4(2).38D4  Q8.10D12  M4(2).16D6  D4.5D20  M4(2).16D10  D4.5D28 ...
D4.5D4 is a maximal quotient of
 M4(2).D2p: M4(2).49D4  M4(2).33D4  M4(2).6D4  M4(2).11D4  M4(2).13D4  D12.7D4  C24.18D4  Q8.10D12 ...
 (C2×C8).D2p: C8.28D8  Q81Q16  C810SD16  C87Q16  D4.3SD16  Q8.3SD16  C8.D8  C8.SD16 ...

Matrix representation of D4.5D4 in GL4(𝔽7) generated by

0651
3056
3361
1631
,
1253
4022
6602
6146
,
5026
6556
6112
2262
,
4245
6335
6141
2253
G:=sub<GL(4,GF(7))| [0,3,3,1,6,0,3,6,5,5,6,3,1,6,1,1],[1,4,6,6,2,0,6,1,5,2,0,4,3,2,2,6],[5,6,6,2,0,5,1,2,2,5,1,6,6,6,2,2],[4,6,6,2,2,3,1,2,4,3,4,5,5,5,1,3] >;

D4.5D4 in GAP, Magma, Sage, TeX

D_4._5D_4
% in TeX

G:=Group("D4.5D4");
// GroupNames label

G:=SmallGroup(64,154);
// by ID

G=gap.SmallGroup(64,154);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,247,362,963,117,1444,376,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^4=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^3>;
// generators/relations

Export

Subgroup lattice of D4.5D4 in TeX
Character table of D4.5D4 in TeX

׿
×
𝔽