Copied to
clipboard

G = D4⋊D11order 176 = 24·11

The semidirect product of D4 and D11 acting via D11/C11=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D11, C112D8, D442C2, C4.1D22, C22.7D4, C44.1C22, C11⋊C81C2, (D4×C11)⋊1C2, C2.4(C11⋊D4), SmallGroup(176,14)

Series: Derived Chief Lower central Upper central

C1C44 — D4⋊D11
C1C11C22C44D44 — D4⋊D11
C11C22C44 — D4⋊D11
C1C2C4D4

Generators and relations for D4⋊D11
 G = < a,b,c,d | a4=b2=c11=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
44C2
2C22
22C22
4D11
4C22
11C8
11D4
2D22
2C2×C22
11D8

Smallest permutation representation of D4⋊D11
On 88 points
Generators in S88
(1 43 21 32)(2 44 22 33)(3 34 12 23)(4 35 13 24)(5 36 14 25)(6 37 15 26)(7 38 16 27)(8 39 17 28)(9 40 18 29)(10 41 19 30)(11 42 20 31)(45 67 56 78)(46 68 57 79)(47 69 58 80)(48 70 59 81)(49 71 60 82)(50 72 61 83)(51 73 62 84)(52 74 63 85)(53 75 64 86)(54 76 65 87)(55 77 66 88)
(1 87)(2 88)(3 78)(4 79)(5 80)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 76)(22 77)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 63)(42 64)(43 65)(44 66)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 44)(31 43)(32 42)(33 41)(45 73)(46 72)(47 71)(48 70)(49 69)(50 68)(51 67)(52 77)(53 76)(54 75)(55 74)(56 84)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 88)(64 87)(65 86)(66 85)

G:=sub<Sym(88)| (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31)(45,67,56,78)(46,68,57,79)(47,69,58,80)(48,70,59,81)(49,71,60,82)(50,72,61,83)(51,73,62,84)(52,74,63,85)(53,75,64,86)(54,76,65,87)(55,77,66,88), (1,87)(2,88)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,77)(53,76)(54,75)(55,74)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,88)(64,87)(65,86)(66,85)>;

G:=Group( (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31)(45,67,56,78)(46,68,57,79)(47,69,58,80)(48,70,59,81)(49,71,60,82)(50,72,61,83)(51,73,62,84)(52,74,63,85)(53,75,64,86)(54,76,65,87)(55,77,66,88), (1,87)(2,88)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,77)(53,76)(54,75)(55,74)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,88)(64,87)(65,86)(66,85) );

G=PermutationGroup([[(1,43,21,32),(2,44,22,33),(3,34,12,23),(4,35,13,24),(5,36,14,25),(6,37,15,26),(7,38,16,27),(8,39,17,28),(9,40,18,29),(10,41,19,30),(11,42,20,31),(45,67,56,78),(46,68,57,79),(47,69,58,80),(48,70,59,81),(49,71,60,82),(50,72,61,83),(51,73,62,84),(52,74,63,85),(53,75,64,86),(54,76,65,87),(55,77,66,88)], [(1,87),(2,88),(3,78),(4,79),(5,80),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,76),(22,77),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,63),(42,64),(43,65),(44,66)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,44),(31,43),(32,42),(33,41),(45,73),(46,72),(47,71),(48,70),(49,69),(50,68),(51,67),(52,77),(53,76),(54,75),(55,74),(56,84),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,88),(64,87),(65,86),(66,85)]])

D4⋊D11 is a maximal subgroup of   D8×D11  D4⋊D22  D88⋊C2  Q8.D22  D446C22  Q8⋊D22  D4.8D22
D4⋊D11 is a maximal quotient of   C44.Q8  C22.D8  C11⋊D16  D8.D11  C8.6D22  C11⋊Q32  D4⋊Dic11

32 conjugacy classes

class 1 2A2B2C 4 8A8B11A···11E22A···22E22F···22O44A···44E
order122248811···1122···2222···2244···44
size11444222222···22···24···44···4

32 irreducible representations

dim1111222224
type+++++++++
imageC1C2C2C2D4D8D11D22C11⋊D4D4⋊D11
kernelD4⋊D11C11⋊C8D44D4×C11C22C11D4C4C2C1
# reps11111255105

Matrix representation of D4⋊D11 in GL4(𝔽89) generated by

88000
08800
008836
00841
,
163900
147300
002584
001864
,
37100
465900
0010
0001
,
664100
112300
0010
00588
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,88,84,0,0,36,1],[16,14,0,0,39,73,0,0,0,0,25,18,0,0,84,64],[37,46,0,0,1,59,0,0,0,0,1,0,0,0,0,1],[66,11,0,0,41,23,0,0,0,0,1,5,0,0,0,88] >;

D4⋊D11 in GAP, Magma, Sage, TeX

D_4\rtimes D_{11}
% in TeX

G:=Group("D4:D11");
// GroupNames label

G:=SmallGroup(176,14);
// by ID

G=gap.SmallGroup(176,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,61,182,97,42,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^11=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D11 in TeX

׿
×
𝔽