metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.2D4, C4.10D20, C10.4Q16, Dic10⋊6C4, C10.5SD16, C4⋊C4.3D5, C4.2(C4×D5), C20.25(C2×C4), C5⋊2(Q8⋊C4), (C2×C10).31D4, (C2×C4).36D10, C2.2(D4.D5), C2.2(C5⋊Q16), (C2×C20).11C22, (C2×Dic10).6C2, C2.6(D10⋊C4), C10.15(C22⋊C4), C22.15(C5⋊D4), (C5×C4⋊C4).3C2, (C2×C5⋊2C8).3C2, SmallGroup(160,17)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — C4⋊C4 |
Generators and relations for C10.Q16
G = < a,b,c | a10=b8=1, c2=a5b4, bab-1=a-1, ac=ca, cbc-1=a5b-1 >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 30 50 142 11 140 34 157)(2 29 41 141 12 139 35 156)(3 28 42 150 13 138 36 155)(4 27 43 149 14 137 37 154)(5 26 44 148 15 136 38 153)(6 25 45 147 16 135 39 152)(7 24 46 146 17 134 40 151)(8 23 47 145 18 133 31 160)(9 22 48 144 19 132 32 159)(10 21 49 143 20 131 33 158)(51 116 64 99 87 101 79 124)(52 115 65 98 88 110 80 123)(53 114 66 97 89 109 71 122)(54 113 67 96 90 108 72 121)(55 112 68 95 81 107 73 130)(56 111 69 94 82 106 74 129)(57 120 70 93 83 105 75 128)(58 119 61 92 84 104 76 127)(59 118 62 91 85 103 77 126)(60 117 63 100 86 102 78 125)
(1 63 16 73)(2 64 17 74)(3 65 18 75)(4 66 19 76)(5 67 20 77)(6 68 11 78)(7 69 12 79)(8 70 13 80)(9 61 14 71)(10 62 15 72)(21 113 136 103)(22 114 137 104)(23 115 138 105)(24 116 139 106)(25 117 140 107)(26 118 131 108)(27 119 132 109)(28 120 133 110)(29 111 134 101)(30 112 135 102)(31 83 42 52)(32 84 43 53)(33 85 44 54)(34 86 45 55)(35 87 46 56)(36 88 47 57)(37 89 48 58)(38 90 49 59)(39 81 50 60)(40 82 41 51)(91 143 121 153)(92 144 122 154)(93 145 123 155)(94 146 124 156)(95 147 125 157)(96 148 126 158)(97 149 127 159)(98 150 128 160)(99 141 129 151)(100 142 130 152)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,30,50,142,11,140,34,157)(2,29,41,141,12,139,35,156)(3,28,42,150,13,138,36,155)(4,27,43,149,14,137,37,154)(5,26,44,148,15,136,38,153)(6,25,45,147,16,135,39,152)(7,24,46,146,17,134,40,151)(8,23,47,145,18,133,31,160)(9,22,48,144,19,132,32,159)(10,21,49,143,20,131,33,158)(51,116,64,99,87,101,79,124)(52,115,65,98,88,110,80,123)(53,114,66,97,89,109,71,122)(54,113,67,96,90,108,72,121)(55,112,68,95,81,107,73,130)(56,111,69,94,82,106,74,129)(57,120,70,93,83,105,75,128)(58,119,61,92,84,104,76,127)(59,118,62,91,85,103,77,126)(60,117,63,100,86,102,78,125), (1,63,16,73)(2,64,17,74)(3,65,18,75)(4,66,19,76)(5,67,20,77)(6,68,11,78)(7,69,12,79)(8,70,13,80)(9,61,14,71)(10,62,15,72)(21,113,136,103)(22,114,137,104)(23,115,138,105)(24,116,139,106)(25,117,140,107)(26,118,131,108)(27,119,132,109)(28,120,133,110)(29,111,134,101)(30,112,135,102)(31,83,42,52)(32,84,43,53)(33,85,44,54)(34,86,45,55)(35,87,46,56)(36,88,47,57)(37,89,48,58)(38,90,49,59)(39,81,50,60)(40,82,41,51)(91,143,121,153)(92,144,122,154)(93,145,123,155)(94,146,124,156)(95,147,125,157)(96,148,126,158)(97,149,127,159)(98,150,128,160)(99,141,129,151)(100,142,130,152)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,30,50,142,11,140,34,157)(2,29,41,141,12,139,35,156)(3,28,42,150,13,138,36,155)(4,27,43,149,14,137,37,154)(5,26,44,148,15,136,38,153)(6,25,45,147,16,135,39,152)(7,24,46,146,17,134,40,151)(8,23,47,145,18,133,31,160)(9,22,48,144,19,132,32,159)(10,21,49,143,20,131,33,158)(51,116,64,99,87,101,79,124)(52,115,65,98,88,110,80,123)(53,114,66,97,89,109,71,122)(54,113,67,96,90,108,72,121)(55,112,68,95,81,107,73,130)(56,111,69,94,82,106,74,129)(57,120,70,93,83,105,75,128)(58,119,61,92,84,104,76,127)(59,118,62,91,85,103,77,126)(60,117,63,100,86,102,78,125), (1,63,16,73)(2,64,17,74)(3,65,18,75)(4,66,19,76)(5,67,20,77)(6,68,11,78)(7,69,12,79)(8,70,13,80)(9,61,14,71)(10,62,15,72)(21,113,136,103)(22,114,137,104)(23,115,138,105)(24,116,139,106)(25,117,140,107)(26,118,131,108)(27,119,132,109)(28,120,133,110)(29,111,134,101)(30,112,135,102)(31,83,42,52)(32,84,43,53)(33,85,44,54)(34,86,45,55)(35,87,46,56)(36,88,47,57)(37,89,48,58)(38,90,49,59)(39,81,50,60)(40,82,41,51)(91,143,121,153)(92,144,122,154)(93,145,123,155)(94,146,124,156)(95,147,125,157)(96,148,126,158)(97,149,127,159)(98,150,128,160)(99,141,129,151)(100,142,130,152) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,30,50,142,11,140,34,157),(2,29,41,141,12,139,35,156),(3,28,42,150,13,138,36,155),(4,27,43,149,14,137,37,154),(5,26,44,148,15,136,38,153),(6,25,45,147,16,135,39,152),(7,24,46,146,17,134,40,151),(8,23,47,145,18,133,31,160),(9,22,48,144,19,132,32,159),(10,21,49,143,20,131,33,158),(51,116,64,99,87,101,79,124),(52,115,65,98,88,110,80,123),(53,114,66,97,89,109,71,122),(54,113,67,96,90,108,72,121),(55,112,68,95,81,107,73,130),(56,111,69,94,82,106,74,129),(57,120,70,93,83,105,75,128),(58,119,61,92,84,104,76,127),(59,118,62,91,85,103,77,126),(60,117,63,100,86,102,78,125)], [(1,63,16,73),(2,64,17,74),(3,65,18,75),(4,66,19,76),(5,67,20,77),(6,68,11,78),(7,69,12,79),(8,70,13,80),(9,61,14,71),(10,62,15,72),(21,113,136,103),(22,114,137,104),(23,115,138,105),(24,116,139,106),(25,117,140,107),(26,118,131,108),(27,119,132,109),(28,120,133,110),(29,111,134,101),(30,112,135,102),(31,83,42,52),(32,84,43,53),(33,85,44,54),(34,86,45,55),(35,87,46,56),(36,88,47,57),(37,89,48,58),(38,90,49,59),(39,81,50,60),(40,82,41,51),(91,143,121,153),(92,144,122,154),(93,145,123,155),(94,146,124,156),(95,147,125,157),(96,148,126,158),(97,149,127,159),(98,150,128,160),(99,141,129,151),(100,142,130,152)]])
C10.Q16 is a maximal subgroup of
C20⋊Q8⋊C2 Dic10.D4 (C8×Dic5)⋊C2 D4⋊(C4×D5) D4⋊2D5⋊C4 D4⋊3D20 D4.D20 D20.D4 Dic5.3Q16 Dic5⋊Q16 C40⋊8C4.C2 D5×Q8⋊C4 (Q8×D5)⋊C4 Q8⋊2D20 D10⋊4Q16 Dic5⋊SD16 Dic5⋊8SD16 Dic20⋊15C4 Dic10⋊Q8 Dic10.Q8 D10.12SD16 C8⋊8D20 C20.(C4○D4) C8.2D20 Dic5⋊5Q16 Dic10⋊2Q8 Dic10.2Q8 D10.8Q16 C8⋊3D20 D10⋊2Q16 C2.D8⋊7D5 C40⋊21(C2×C4) C4○D20⋊9C4 C4⋊C4.230D10 C4⋊C4.231D10 C4⋊C4.233D10 C4○D20⋊10C4 C4.(C2×D20) D4.1D20 C4×D4.D5 C42.51D10 D4.2D20 Q8.1D20 C4×C5⋊Q16 C42.59D10 C20⋊7Q16 D20⋊17D4 Dic10⋊17D4 C5⋊2C8⋊23D4 C4.(D4×D5) D20.37D4 Dic10.37D4 (C2×C10)⋊Q16 C5⋊(C8.D4) Dic10.4Q8 C42.216D10 C42.71D10 C42.82D10 Dic10⋊5Q8 C20.11Q16 Dic10⋊6Q8 C30.Q16 Dic30⋊15C4 Dic30⋊9C4
C10.Q16 is a maximal quotient of
C4⋊Dic5⋊C4 C4.Dic20 Dic10⋊4C8 C20.2D8 C20.31C42 C30.Q16 Dic30⋊15C4 Dic30⋊9C4
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | - | - | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | SD16 | Q16 | D10 | C4×D5 | D20 | C5⋊D4 | D4.D5 | C5⋊Q16 |
kernel | C10.Q16 | C2×C5⋊2C8 | C5×C4⋊C4 | C2×Dic10 | Dic10 | C20 | C2×C10 | C4⋊C4 | C10 | C10 | C2×C4 | C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C10.Q16 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 35 |
0 | 0 | 0 | 7 | 34 |
9 | 0 | 0 | 0 | 0 |
0 | 29 | 12 | 0 | 0 |
0 | 29 | 29 | 0 | 0 |
0 | 0 | 0 | 28 | 15 |
0 | 0 | 0 | 16 | 13 |
32 | 0 | 0 | 0 | 0 |
0 | 6 | 39 | 0 | 0 |
0 | 39 | 35 | 0 | 0 |
0 | 0 | 0 | 17 | 6 |
0 | 0 | 0 | 34 | 24 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,35,34],[9,0,0,0,0,0,29,29,0,0,0,12,29,0,0,0,0,0,28,16,0,0,0,15,13],[32,0,0,0,0,0,6,39,0,0,0,39,35,0,0,0,0,0,17,34,0,0,0,6,24] >;
C10.Q16 in GAP, Magma, Sage, TeX
C_{10}.Q_{16}
% in TeX
G:=Group("C10.Q16");
// GroupNames label
G:=SmallGroup(160,17);
// by ID
G=gap.SmallGroup(160,17);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,121,31,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^10=b^8=1,c^2=a^5*b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^5*b^-1>;
// generators/relations
Export