Copied to
clipboard

G = C20.17D4order 160 = 25·5

17th non-split extension by C20 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.17D4, C23.7D10, (C2×D4).6D5, (C4×Dic5)⋊5C2, (D4×C10).5C2, (C2×C4).50D10, C10.48(C2×D4), C4.7(C5⋊D4), C53(C4.4D4), C23.D59C2, (C2×Dic10)⋊10C2, C10.30(C4○D4), (C2×C20).33C22, (C2×C10).51C23, C2.16(D42D5), C22.58(C22×D5), (C22×C10).19C22, (C2×Dic5).18C22, C2.12(C2×C5⋊D4), SmallGroup(160,157)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C20.17D4
C1C5C10C2×C10C2×Dic5C4×Dic5 — C20.17D4
C5C2×C10 — C20.17D4
C1C22C2×D4

Generators and relations for C20.17D4
 G = < a,b,c | a20=b4=1, c2=a10, bab-1=a9, cac-1=a-1, cbc-1=a10b-1 >

Subgroups: 208 in 76 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C22⋊C4, C2×D4, C2×Q8, Dic5, C20, C2×C10, C2×C10, C4.4D4, Dic10, C2×Dic5, C2×C20, C5×D4, C22×C10, C4×Dic5, C23.D5, C2×Dic10, D4×C10, C20.17D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4.4D4, C5⋊D4, C22×D5, D42D5, C2×C5⋊D4, C20.17D4

Smallest permutation representation of C20.17D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 50 78 26)(2 59 79 35)(3 48 80 24)(4 57 61 33)(5 46 62 22)(6 55 63 31)(7 44 64 40)(8 53 65 29)(9 42 66 38)(10 51 67 27)(11 60 68 36)(12 49 69 25)(13 58 70 34)(14 47 71 23)(15 56 72 32)(16 45 73 21)(17 54 74 30)(18 43 75 39)(19 52 76 28)(20 41 77 37)
(1 45 11 55)(2 44 12 54)(3 43 13 53)(4 42 14 52)(5 41 15 51)(6 60 16 50)(7 59 17 49)(8 58 18 48)(9 57 19 47)(10 56 20 46)(21 68 31 78)(22 67 32 77)(23 66 33 76)(24 65 34 75)(25 64 35 74)(26 63 36 73)(27 62 37 72)(28 61 38 71)(29 80 39 70)(30 79 40 69)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,50,78,26)(2,59,79,35)(3,48,80,24)(4,57,61,33)(5,46,62,22)(6,55,63,31)(7,44,64,40)(8,53,65,29)(9,42,66,38)(10,51,67,27)(11,60,68,36)(12,49,69,25)(13,58,70,34)(14,47,71,23)(15,56,72,32)(16,45,73,21)(17,54,74,30)(18,43,75,39)(19,52,76,28)(20,41,77,37), (1,45,11,55)(2,44,12,54)(3,43,13,53)(4,42,14,52)(5,41,15,51)(6,60,16,50)(7,59,17,49)(8,58,18,48)(9,57,19,47)(10,56,20,46)(21,68,31,78)(22,67,32,77)(23,66,33,76)(24,65,34,75)(25,64,35,74)(26,63,36,73)(27,62,37,72)(28,61,38,71)(29,80,39,70)(30,79,40,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,50,78,26)(2,59,79,35)(3,48,80,24)(4,57,61,33)(5,46,62,22)(6,55,63,31)(7,44,64,40)(8,53,65,29)(9,42,66,38)(10,51,67,27)(11,60,68,36)(12,49,69,25)(13,58,70,34)(14,47,71,23)(15,56,72,32)(16,45,73,21)(17,54,74,30)(18,43,75,39)(19,52,76,28)(20,41,77,37), (1,45,11,55)(2,44,12,54)(3,43,13,53)(4,42,14,52)(5,41,15,51)(6,60,16,50)(7,59,17,49)(8,58,18,48)(9,57,19,47)(10,56,20,46)(21,68,31,78)(22,67,32,77)(23,66,33,76)(24,65,34,75)(25,64,35,74)(26,63,36,73)(27,62,37,72)(28,61,38,71)(29,80,39,70)(30,79,40,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,50,78,26),(2,59,79,35),(3,48,80,24),(4,57,61,33),(5,46,62,22),(6,55,63,31),(7,44,64,40),(8,53,65,29),(9,42,66,38),(10,51,67,27),(11,60,68,36),(12,49,69,25),(13,58,70,34),(14,47,71,23),(15,56,72,32),(16,45,73,21),(17,54,74,30),(18,43,75,39),(19,52,76,28),(20,41,77,37)], [(1,45,11,55),(2,44,12,54),(3,43,13,53),(4,42,14,52),(5,41,15,51),(6,60,16,50),(7,59,17,49),(8,58,18,48),(9,57,19,47),(10,56,20,46),(21,68,31,78),(22,67,32,77),(23,66,33,76),(24,65,34,75),(25,64,35,74),(26,63,36,73),(27,62,37,72),(28,61,38,71),(29,80,39,70),(30,79,40,69)]])

C20.17D4 is a maximal subgroup of
C23.D20  (C2×D4).F5  (D4×C10).C4  D20.1D4  C20⋊Q8⋊C2  Dic10.D4  (C8×Dic5)⋊C2  D20.D4  (C2×D8).D5  C4011D4  C40.22D4  (C5×Q8).D4  C40.31D4  C40.43D4  D20.38D4  2+ 1+4.D5  C42.106D10  C42.229D10  C42.114D10  C42.115D10  C24.32D10  C24.35D10  C245D10  Dic1019D4  C4⋊C4.178D10  C10.362+ 1+4  D2020D4  C10.422+ 1+4  C10.452+ 1+4  C10.742- 1+4  C10.812- 1+4  C10.622+ 1+4  C10.842- 1+4  C42.139D10  D5×C4.4D4  C42.141D10  C42.166D10  C4226D10  C42.238D10  C24.41D10  C24.42D10  C10.1052- 1+4  C10.1072- 1+4  (C2×C20)⋊17D4  C60.89D4  C60.69D4  C23.D5⋊S3  C60.17D4
C20.17D4 is a maximal quotient of
C24.4D10  C23⋊Dic10  C23.14D20  (C2×Dic5)⋊6Q8  C20.48(C4⋊C4)  (C2×C20).288D4  C42.62D10  C42.213D10  C20.16D8  C42.72D10  C20.Q16  C42.77D10  C24.19D10  C24.20D10  C60.89D4  C60.69D4  C23.D5⋊S3  C60.17D4

34 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B10A···10F10G···10N20A20B20C20D
order122222444444445510···1010···1020202020
size11114422101010102020222···24···44444

34 irreducible representations

dim111112222224
type+++++++++-
imageC1C2C2C2C2D4D5C4○D4D10D10C5⋊D4D42D5
kernelC20.17D4C4×Dic5C23.D5C2×Dic10D4×C10C20C2×D4C10C2×C4C23C4C2
# reps114112242484

Matrix representation of C20.17D4 in GL4(𝔽41) generated by

37000
01000
004018
0091
,
0100
40000
0092
00132
,
04000
40000
00320
00409
G:=sub<GL(4,GF(41))| [37,0,0,0,0,10,0,0,0,0,40,9,0,0,18,1],[0,40,0,0,1,0,0,0,0,0,9,1,0,0,2,32],[0,40,0,0,40,0,0,0,0,0,32,40,0,0,0,9] >;

C20.17D4 in GAP, Magma, Sage, TeX

C_{20}._{17}D_4
% in TeX

G:=Group("C20.17D4");
// GroupNames label

G:=SmallGroup(160,157);
// by ID

G=gap.SmallGroup(160,157);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,55,506,116,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=b^4=1,c^2=a^10,b*a*b^-1=a^9,c*a*c^-1=a^-1,c*b*c^-1=a^10*b^-1>;
// generators/relations

׿
×
𝔽