# Extensions 1→N→G→Q→1 with N=D12 and Q=C22

Direct product G=N×Q with N=D12 and Q=C22
dρLabelID
C22×D1248C2^2xD1296,207

Semidirect products G=N:Q with N=D12 and Q=C22
extensionφ:Q→Out NdρLabelID
D121C22 = S3×D8φ: C22/C1C22 ⊆ Out D12244+D12:1C2^296,117
D122C22 = Q83D6φ: C22/C1C22 ⊆ Out D12244+D12:2C2^296,121
D123C22 = C2×D24φ: C22/C2C2 ⊆ Out D1248D12:3C2^296,110
D124C22 = C8⋊D6φ: C22/C2C2 ⊆ Out D12244+D12:4C2^296,115
D125C22 = C2×D4⋊S3φ: C22/C2C2 ⊆ Out D1248D12:5C2^296,138
D126C22 = D126C22φ: C22/C2C2 ⊆ Out D12244D12:6C2^296,139
D127C22 = C2×S3×D4φ: C22/C2C2 ⊆ Out D1224D12:7C2^296,209
D128C22 = D46D6φ: C22/C2C2 ⊆ Out D12244D12:8C2^296,211
D129C22 = C2×Q83S3φ: C22/C2C2 ⊆ Out D1248D12:9C2^296,213
D1210C22 = S3×C4○D4φ: C22/C2C2 ⊆ Out D12244D12:10C2^296,215
D1211C22 = D4○D12φ: C22/C2C2 ⊆ Out D12244+D12:11C2^296,216
D1212C22 = C2×C4○D12φ: trivial image48D12:12C2^296,208

Non-split extensions G=N.Q with N=D12 and Q=C22
extensionφ:Q→Out NdρLabelID
D12.1C22 = D8⋊S3φ: C22/C1C22 ⊆ Out D12244D12.1C2^296,118
D12.2C22 = S3×SD16φ: C22/C1C22 ⊆ Out D12244D12.2C2^296,120
D12.3C22 = Q8.7D6φ: C22/C1C22 ⊆ Out D12484D12.3C2^296,123
D12.4C22 = Q16⋊S3φ: C22/C1C22 ⊆ Out D12484D12.4C2^296,125
D12.5C22 = D24⋊C2φ: C22/C1C22 ⊆ Out D12484+D12.5C2^296,126
D12.6C22 = C2×C24⋊C2φ: C22/C2C2 ⊆ Out D1248D12.6C2^296,109
D12.7C22 = C4○D24φ: C22/C2C2 ⊆ Out D12482D12.7C2^296,111
D12.8C22 = C8.D6φ: C22/C2C2 ⊆ Out D12484-D12.8C2^296,116
D12.9C22 = C2×Q82S3φ: C22/C2C2 ⊆ Out D1248D12.9C2^296,148
D12.10C22 = Q8.11D6φ: C22/C2C2 ⊆ Out D12484D12.10C2^296,149
D12.11C22 = D4⋊D6φ: C22/C2C2 ⊆ Out D12244+D12.11C2^296,156
D12.12C22 = Q8.13D6φ: C22/C2C2 ⊆ Out D12484D12.12C2^296,157
D12.13C22 = Q8.15D6φ: C22/C2C2 ⊆ Out D12484D12.13C2^296,214
D12.14C22 = Q8○D12φ: trivial image484-D12.14C2^296,217

׿
×
𝔽