Copied to
clipboard

G = C5×SL2(𝔽3)  order 120 = 23·3·5

Direct product of C5 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C5×SL2(𝔽3), Q8⋊C15, C10.A4, (C5×Q8)⋊C3, C2.(C5×A4), SmallGroup(120,15)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C5×SL2(𝔽3)
C1C2Q8C5×Q8 — C5×SL2(𝔽3)
Q8 — C5×SL2(𝔽3)
C1C10

Generators and relations for C5×SL2(𝔽3)
 G = < a,b,c,d | a5=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >

4C3
3C4
4C6
4C15
3C20
4C30

Smallest permutation representation of C5×SL2(𝔽3)
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 28 12 32)(2 29 13 33)(3 30 14 34)(4 26 15 35)(5 27 11 31)(6 19 21 40)(7 20 22 36)(8 16 23 37)(9 17 24 38)(10 18 25 39)
(1 16 12 37)(2 17 13 38)(3 18 14 39)(4 19 15 40)(5 20 11 36)(6 35 21 26)(7 31 22 27)(8 32 23 28)(9 33 24 29)(10 34 25 30)
(6 19 26)(7 20 27)(8 16 28)(9 17 29)(10 18 30)(21 40 35)(22 36 31)(23 37 32)(24 38 33)(25 39 34)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,28,12,32)(2,29,13,33)(3,30,14,34)(4,26,15,35)(5,27,11,31)(6,19,21,40)(7,20,22,36)(8,16,23,37)(9,17,24,38)(10,18,25,39), (1,16,12,37)(2,17,13,38)(3,18,14,39)(4,19,15,40)(5,20,11,36)(6,35,21,26)(7,31,22,27)(8,32,23,28)(9,33,24,29)(10,34,25,30), (6,19,26)(7,20,27)(8,16,28)(9,17,29)(10,18,30)(21,40,35)(22,36,31)(23,37,32)(24,38,33)(25,39,34)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,28,12,32)(2,29,13,33)(3,30,14,34)(4,26,15,35)(5,27,11,31)(6,19,21,40)(7,20,22,36)(8,16,23,37)(9,17,24,38)(10,18,25,39), (1,16,12,37)(2,17,13,38)(3,18,14,39)(4,19,15,40)(5,20,11,36)(6,35,21,26)(7,31,22,27)(8,32,23,28)(9,33,24,29)(10,34,25,30), (6,19,26)(7,20,27)(8,16,28)(9,17,29)(10,18,30)(21,40,35)(22,36,31)(23,37,32)(24,38,33)(25,39,34) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,28,12,32),(2,29,13,33),(3,30,14,34),(4,26,15,35),(5,27,11,31),(6,19,21,40),(7,20,22,36),(8,16,23,37),(9,17,24,38),(10,18,25,39)], [(1,16,12,37),(2,17,13,38),(3,18,14,39),(4,19,15,40),(5,20,11,36),(6,35,21,26),(7,31,22,27),(8,32,23,28),(9,33,24,29),(10,34,25,30)], [(6,19,26),(7,20,27),(8,16,28),(9,17,29),(10,18,30),(21,40,35),(22,36,31),(23,37,32),(24,38,33),(25,39,34)])

C5×SL2(𝔽3) is a maximal subgroup of   Q8.D15  Q8⋊D15  Dic5.A4

35 conjugacy classes

class 1  2 3A3B 4 5A5B5C5D6A6B10A10B10C10D15A···15H20A20B20C20D30A···30H
order123345555661010101015···152020202030···30
size1144611114411114···466664···4

35 irreducible representations

dim111122233
type+-+
imageC1C3C5C15SL2(𝔽3)SL2(𝔽3)C5×SL2(𝔽3)A4C5×A4
kernelC5×SL2(𝔽3)C5×Q8SL2(𝔽3)Q8C5C5C1C10C2
# reps1248121214

Matrix representation of C5×SL2(𝔽3) in GL2(𝔽11) generated by

30
03
,
14
510
,
710
64
,
06
910
G:=sub<GL(2,GF(11))| [3,0,0,3],[1,5,4,10],[7,6,10,4],[0,9,6,10] >;

C5×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_5\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C5xSL(2,3)");
// GroupNames label

G:=SmallGroup(120,15);
// by ID

G=gap.SmallGroup(120,15);
# by ID

G:=PCGroup([5,-3,-5,-2,2,-2,452,72,903,133,58]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C5×SL2(𝔽3) in TeX

׿
×
𝔽