Extensions 1→N→G→Q→1 with N=C60 and Q=C2

Direct product G=N×Q with N=C60 and Q=C2
dρLabelID
C2×C60120C2xC60120,31

Semidirect products G=N:Q with N=C60 and Q=C2
extensionφ:Q→Aut NdρLabelID
C601C2 = D60φ: C2/C1C2 ⊆ Aut C60602+C60:1C2120,28
C602C2 = C4×D15φ: C2/C1C2 ⊆ Aut C60602C60:2C2120,27
C603C2 = C3×D20φ: C2/C1C2 ⊆ Aut C60602C60:3C2120,18
C604C2 = C5×D12φ: C2/C1C2 ⊆ Aut C60602C60:4C2120,23
C605C2 = D5×C12φ: C2/C1C2 ⊆ Aut C60602C60:5C2120,17
C606C2 = S3×C20φ: C2/C1C2 ⊆ Aut C60602C60:6C2120,22
C607C2 = D4×C15φ: C2/C1C2 ⊆ Aut C60602C60:7C2120,32

Non-split extensions G=N.Q with N=C60 and Q=C2
extensionφ:Q→Aut NdρLabelID
C60.1C2 = Dic30φ: C2/C1C2 ⊆ Aut C601202-C60.1C2120,26
C60.2C2 = C153C8φ: C2/C1C2 ⊆ Aut C601202C60.2C2120,3
C60.3C2 = C3×Dic10φ: C2/C1C2 ⊆ Aut C601202C60.3C2120,16
C60.4C2 = C5×Dic6φ: C2/C1C2 ⊆ Aut C601202C60.4C2120,21
C60.5C2 = C3×C52C8φ: C2/C1C2 ⊆ Aut C601202C60.5C2120,2
C60.6C2 = C5×C3⋊C8φ: C2/C1C2 ⊆ Aut C601202C60.6C2120,1
C60.7C2 = Q8×C15φ: C2/C1C2 ⊆ Aut C601202C60.7C2120,33

׿
×
𝔽