direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×C5⋊2C8, C15⋊4C8, C5⋊2C24, C20.2C6, C60.5C2, C30.4C4, C12.4D5, C10.2C12, C6.2Dic5, C4.2(C3×D5), C2.(C3×Dic5), SmallGroup(120,2)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C3×C5⋊2C8 |
Generators and relations for C3×C5⋊2C8
G = < a,b,c | a3=b5=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 100 65)(2 101 66)(3 102 67)(4 103 68)(5 104 69)(6 97 70)(7 98 71)(8 99 72)(9 86 43)(10 87 44)(11 88 45)(12 81 46)(13 82 47)(14 83 48)(15 84 41)(16 85 42)(17 55 58)(18 56 59)(19 49 60)(20 50 61)(21 51 62)(22 52 63)(23 53 64)(24 54 57)(25 90 115)(26 91 116)(27 92 117)(28 93 118)(29 94 119)(30 95 120)(31 96 113)(32 89 114)(33 111 74)(34 112 75)(35 105 76)(36 106 77)(37 107 78)(38 108 79)(39 109 80)(40 110 73)
(1 48 27 51 112)(2 105 52 28 41)(3 42 29 53 106)(4 107 54 30 43)(5 44 31 55 108)(6 109 56 32 45)(7 46 25 49 110)(8 111 50 26 47)(9 103 78 57 95)(10 96 58 79 104)(11 97 80 59 89)(12 90 60 73 98)(13 99 74 61 91)(14 92 62 75 100)(15 101 76 63 93)(16 94 64 77 102)(17 38 69 87 113)(18 114 88 70 39)(19 40 71 81 115)(20 116 82 72 33)(21 34 65 83 117)(22 118 84 66 35)(23 36 67 85 119)(24 120 86 68 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
G:=sub<Sym(120)| (1,100,65)(2,101,66)(3,102,67)(4,103,68)(5,104,69)(6,97,70)(7,98,71)(8,99,72)(9,86,43)(10,87,44)(11,88,45)(12,81,46)(13,82,47)(14,83,48)(15,84,41)(16,85,42)(17,55,58)(18,56,59)(19,49,60)(20,50,61)(21,51,62)(22,52,63)(23,53,64)(24,54,57)(25,90,115)(26,91,116)(27,92,117)(28,93,118)(29,94,119)(30,95,120)(31,96,113)(32,89,114)(33,111,74)(34,112,75)(35,105,76)(36,106,77)(37,107,78)(38,108,79)(39,109,80)(40,110,73), (1,48,27,51,112)(2,105,52,28,41)(3,42,29,53,106)(4,107,54,30,43)(5,44,31,55,108)(6,109,56,32,45)(7,46,25,49,110)(8,111,50,26,47)(9,103,78,57,95)(10,96,58,79,104)(11,97,80,59,89)(12,90,60,73,98)(13,99,74,61,91)(14,92,62,75,100)(15,101,76,63,93)(16,94,64,77,102)(17,38,69,87,113)(18,114,88,70,39)(19,40,71,81,115)(20,116,82,72,33)(21,34,65,83,117)(22,118,84,66,35)(23,36,67,85,119)(24,120,86,68,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;
G:=Group( (1,100,65)(2,101,66)(3,102,67)(4,103,68)(5,104,69)(6,97,70)(7,98,71)(8,99,72)(9,86,43)(10,87,44)(11,88,45)(12,81,46)(13,82,47)(14,83,48)(15,84,41)(16,85,42)(17,55,58)(18,56,59)(19,49,60)(20,50,61)(21,51,62)(22,52,63)(23,53,64)(24,54,57)(25,90,115)(26,91,116)(27,92,117)(28,93,118)(29,94,119)(30,95,120)(31,96,113)(32,89,114)(33,111,74)(34,112,75)(35,105,76)(36,106,77)(37,107,78)(38,108,79)(39,109,80)(40,110,73), (1,48,27,51,112)(2,105,52,28,41)(3,42,29,53,106)(4,107,54,30,43)(5,44,31,55,108)(6,109,56,32,45)(7,46,25,49,110)(8,111,50,26,47)(9,103,78,57,95)(10,96,58,79,104)(11,97,80,59,89)(12,90,60,73,98)(13,99,74,61,91)(14,92,62,75,100)(15,101,76,63,93)(16,94,64,77,102)(17,38,69,87,113)(18,114,88,70,39)(19,40,71,81,115)(20,116,82,72,33)(21,34,65,83,117)(22,118,84,66,35)(23,36,67,85,119)(24,120,86,68,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );
G=PermutationGroup([[(1,100,65),(2,101,66),(3,102,67),(4,103,68),(5,104,69),(6,97,70),(7,98,71),(8,99,72),(9,86,43),(10,87,44),(11,88,45),(12,81,46),(13,82,47),(14,83,48),(15,84,41),(16,85,42),(17,55,58),(18,56,59),(19,49,60),(20,50,61),(21,51,62),(22,52,63),(23,53,64),(24,54,57),(25,90,115),(26,91,116),(27,92,117),(28,93,118),(29,94,119),(30,95,120),(31,96,113),(32,89,114),(33,111,74),(34,112,75),(35,105,76),(36,106,77),(37,107,78),(38,108,79),(39,109,80),(40,110,73)], [(1,48,27,51,112),(2,105,52,28,41),(3,42,29,53,106),(4,107,54,30,43),(5,44,31,55,108),(6,109,56,32,45),(7,46,25,49,110),(8,111,50,26,47),(9,103,78,57,95),(10,96,58,79,104),(11,97,80,59,89),(12,90,60,73,98),(13,99,74,61,91),(14,92,62,75,100),(15,101,76,63,93),(16,94,64,77,102),(17,38,69,87,113),(18,114,88,70,39),(19,40,71,81,115),(20,116,82,72,33),(21,34,65,83,117),(22,118,84,66,35),(23,36,67,85,119),(24,120,86,68,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])
C3×C5⋊2C8 is a maximal subgroup of
C15⋊C16 D15⋊2C8 D6.Dic5 D30.5C4 C5⋊D24 D12.D5 Dic6⋊D5 C5⋊Dic12 D5×C24 SL2(𝔽3).Dic5
48 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 6A | 6B | 8A | 8B | 8C | 8D | 10A | 10B | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 24A | ··· | 24H | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 24 | ··· | 24 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | ||||||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C12 | C24 | D5 | Dic5 | C3×D5 | C5⋊2C8 | C3×Dic5 | C3×C5⋊2C8 |
kernel | C3×C5⋊2C8 | C60 | C5⋊2C8 | C30 | C20 | C15 | C10 | C5 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C3×C5⋊2C8 ►in GL3(𝔽241) generated by
225 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 51 | 240 |
0 | 1 | 0 |
240 | 0 | 0 |
0 | 102 | 231 |
0 | 131 | 139 |
G:=sub<GL(3,GF(241))| [225,0,0,0,1,0,0,0,1],[1,0,0,0,51,1,0,240,0],[240,0,0,0,102,131,0,231,139] >;
C3×C5⋊2C8 in GAP, Magma, Sage, TeX
C_3\times C_5\rtimes_2C_8
% in TeX
G:=Group("C3xC5:2C8");
// GroupNames label
G:=SmallGroup(120,2);
// by ID
G=gap.SmallGroup(120,2);
# by ID
G:=PCGroup([5,-2,-3,-2,-2,-5,30,42,2404]);
// Polycyclic
G:=Group<a,b,c|a^3=b^5=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export