p-group, metacyclic, nilpotent (class 4), monomial
Aliases: C16⋊3C4, C8.2Q8, C2.2D16, C4.1Q16, C2.2Q32, C22.10D8, C4.7(C4⋊C4), (C2×C16).3C2, C8.14(C2×C4), (C2×C4).63D4, C2.D8.2C2, C2.3(C2.D8), (C2×C8).71C22, SmallGroup(64,47)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊3C4
G = < a,b | a16=b4=1, bab-1=a-1 >
Character table of C16⋊3C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 21 36 51)(2 20 37 50)(3 19 38 49)(4 18 39 64)(5 17 40 63)(6 32 41 62)(7 31 42 61)(8 30 43 60)(9 29 44 59)(10 28 45 58)(11 27 46 57)(12 26 47 56)(13 25 48 55)(14 24 33 54)(15 23 34 53)(16 22 35 52)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,21,36,51)(2,20,37,50)(3,19,38,49)(4,18,39,64)(5,17,40,63)(6,32,41,62)(7,31,42,61)(8,30,43,60)(9,29,44,59)(10,28,45,58)(11,27,46,57)(12,26,47,56)(13,25,48,55)(14,24,33,54)(15,23,34,53)(16,22,35,52)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,21,36,51)(2,20,37,50)(3,19,38,49)(4,18,39,64)(5,17,40,63)(6,32,41,62)(7,31,42,61)(8,30,43,60)(9,29,44,59)(10,28,45,58)(11,27,46,57)(12,26,47,56)(13,25,48,55)(14,24,33,54)(15,23,34,53)(16,22,35,52) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,21,36,51),(2,20,37,50),(3,19,38,49),(4,18,39,64),(5,17,40,63),(6,32,41,62),(7,31,42,61),(8,30,43,60),(9,29,44,59),(10,28,45,58),(11,27,46,57),(12,26,47,56),(13,25,48,55),(14,24,33,54),(15,23,34,53),(16,22,35,52)]])
C16⋊3C4 is a maximal subgroup of
D16⋊2C4 Q32⋊2C4 C23.25D8 M5(2)⋊1C4 C4×D16 C4×Q32 SD32⋊3C4 C16⋊7D4 C16.19D4 C16⋊2D4 D8⋊1Q8 C4.Q32 D8.Q8 Q16.Q8 C22.D16 C23.19D8 C23.51D8 C23.20D8 C16⋊2Q8 C16⋊Q8
C16p⋊C4: C32⋊3C4 C32⋊4C4 C48⋊5C4 C80⋊13C4 C80⋊2C4 C112⋊5C4 ...
C8p.Q8: C16.5Q8 C6.6D16 C40.2Q8 C8.4Dic14 ...
C16⋊3C4 is a maximal quotient of
C16⋊3C8 C8.7C42
C16p⋊C4: C32⋊3C4 C32⋊4C4 C48⋊5C4 C80⋊13C4 C80⋊2C4 C112⋊5C4 ...
C8p.Q8: C32.C4 C6.6D16 C40.2Q8 C8.4Dic14 ...
Matrix representation of C16⋊3C4 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 13 | 11 |
0 | 6 | 13 |
4 | 0 | 0 |
0 | 0 | 16 |
0 | 16 | 0 |
G:=sub<GL(3,GF(17))| [16,0,0,0,13,6,0,11,13],[4,0,0,0,0,16,0,16,0] >;
C16⋊3C4 in GAP, Magma, Sage, TeX
C_{16}\rtimes_3C_4
% in TeX
G:=Group("C16:3C4");
// GroupNames label
G:=SmallGroup(64,47);
// by ID
G=gap.SmallGroup(64,47);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,127,362,230,1444,88]);
// Polycyclic
G:=Group<a,b|a^16=b^4=1,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of C16⋊3C4 in TeX
Character table of C16⋊3C4 in TeX