# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C22

Direct product G=N×Q with N=C2×C6 and Q=C22
dρLabelID
C23×C648C2^3xC648,52

Semidirect products G=N:Q with N=C2×C6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊C22 = S3×D4φ: C22/C1C22 ⊆ Aut C2×C6124+(C2xC6):C2^248,38
(C2×C6)⋊2C22 = C6×D4φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6):2C2^248,45
(C2×C6)⋊3C22 = C2×C3⋊D4φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6):3C2^248,43
(C2×C6)⋊4C22 = S3×C23φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6):4C2^248,51

Non-split extensions G=N.Q with N=C2×C6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C6).C22 = D42S3φ: C22/C1C22 ⊆ Aut C2×C6244-(C2xC6).C2^248,39
(C2×C6).2C22 = C3×C4○D4φ: C22/C2C2 ⊆ Aut C2×C6242(C2xC6).2C2^248,47
(C2×C6).3C22 = C4×Dic3φ: C22/C2C2 ⊆ Aut C2×C648(C2xC6).3C2^248,11
(C2×C6).4C22 = Dic3⋊C4φ: C22/C2C2 ⊆ Aut C2×C648(C2xC6).4C2^248,12
(C2×C6).5C22 = C4⋊Dic3φ: C22/C2C2 ⊆ Aut C2×C648(C2xC6).5C2^248,13
(C2×C6).6C22 = D6⋊C4φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6).6C2^248,14
(C2×C6).7C22 = C6.D4φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6).7C2^248,19
(C2×C6).8C22 = C2×Dic6φ: C22/C2C2 ⊆ Aut C2×C648(C2xC6).8C2^248,34
(C2×C6).9C22 = S3×C2×C4φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6).9C2^248,35
(C2×C6).10C22 = C2×D12φ: C22/C2C2 ⊆ Aut C2×C624(C2xC6).10C2^248,36
(C2×C6).11C22 = C4○D12φ: C22/C2C2 ⊆ Aut C2×C6242(C2xC6).11C2^248,37
(C2×C6).12C22 = C22×Dic3φ: C22/C2C2 ⊆ Aut C2×C648(C2xC6).12C2^248,42
(C2×C6).13C22 = C3×C22⋊C4central extension (φ=1)24(C2xC6).13C2^248,21
(C2×C6).14C22 = C3×C4⋊C4central extension (φ=1)48(C2xC6).14C2^248,22
(C2×C6).15C22 = C6×Q8central extension (φ=1)48(C2xC6).15C2^248,46

׿
×
𝔽