p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×D4)⋊2Q8, C4⋊C4.86D4, (C22×C4).77D4, C42⋊6C4⋊30C2, C23.585(C2×D4), C4.33(C22⋊Q8), C2.32(D4⋊4D4), C4.34(C4.4D4), C2.8(C23⋊Q8), C22.C42⋊20C2, C22.211C22≀C2, C2.28(D4.8D4), (C2×C42).357C22, (C22×C4).719C23, C23.37D4.7C2, (C22×D4).74C22, C22.31(C22⋊Q8), C42⋊C2.53C22, C23.41C23⋊2C2, C22.23(C4.4D4), (C2×M4(2)).220C22, C24.3C22.15C2, (C2×C4).15(C2×Q8), (C2×C4).1033(C2×D4), (C2×C4).340(C4○D4), (C2×C4⋊C4).116C22, SmallGroup(128,759)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4)⋊2Q8
G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc=dbd-1=b-1, be=eb, dcd-1=ab2c, ece-1=abc, ede-1=d-1 >
Subgroups: 352 in 141 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, D4⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C42.C2, C4⋊Q8, C2×M4(2), C22×D4, C42⋊6C4, C22.C42, C24.3C22, C23.37D4, C23.41C23, (C2×D4)⋊2Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22≀C2, C22⋊Q8, C4.4D4, C23⋊Q8, D4⋊4D4, D4.8D4, (C2×D4)⋊2Q8
Character table of (C2×D4)⋊2Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
(1 12)(2 9)(3 10)(4 11)(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 27)(22 28)(23 25)(24 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10)(2 9)(3 12)(4 11)(5 31)(6 30)(7 29)(8 32)(13 15)(18 20)(21 24)(22 23)(25 28)(26 27)
(1 14 10 19)(2 13 11 18)(3 16 12 17)(4 15 9 20)(5 22 30 28)(6 21 31 27)(7 24 32 26)(8 23 29 25)
(1 22 10 28)(2 23 11 25)(3 24 12 26)(4 21 9 27)(5 19 30 14)(6 20 31 15)(7 17 32 16)(8 18 29 13)
G:=sub<Sym(32)| (1,12)(2,9)(3,10)(4,11)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,9)(3,12)(4,11)(5,31)(6,30)(7,29)(8,32)(13,15)(18,20)(21,24)(22,23)(25,28)(26,27), (1,14,10,19)(2,13,11,18)(3,16,12,17)(4,15,9,20)(5,22,30,28)(6,21,31,27)(7,24,32,26)(8,23,29,25), (1,22,10,28)(2,23,11,25)(3,24,12,26)(4,21,9,27)(5,19,30,14)(6,20,31,15)(7,17,32,16)(8,18,29,13)>;
G:=Group( (1,12)(2,9)(3,10)(4,11)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,9)(3,12)(4,11)(5,31)(6,30)(7,29)(8,32)(13,15)(18,20)(21,24)(22,23)(25,28)(26,27), (1,14,10,19)(2,13,11,18)(3,16,12,17)(4,15,9,20)(5,22,30,28)(6,21,31,27)(7,24,32,26)(8,23,29,25), (1,22,10,28)(2,23,11,25)(3,24,12,26)(4,21,9,27)(5,19,30,14)(6,20,31,15)(7,17,32,16)(8,18,29,13) );
G=PermutationGroup([[(1,12),(2,9),(3,10),(4,11),(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,27),(22,28),(23,25),(24,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10),(2,9),(3,12),(4,11),(5,31),(6,30),(7,29),(8,32),(13,15),(18,20),(21,24),(22,23),(25,28),(26,27)], [(1,14,10,19),(2,13,11,18),(3,16,12,17),(4,15,9,20),(5,22,30,28),(6,21,31,27),(7,24,32,26),(8,23,29,25)], [(1,22,10,28),(2,23,11,25),(3,24,12,26),(4,21,9,27),(5,19,30,14),(6,20,31,15),(7,17,32,16),(8,18,29,13)]])
Matrix representation of (C2×D4)⋊2Q8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;
(C2×D4)⋊2Q8 in GAP, Magma, Sage, TeX
(C_2\times D_4)\rtimes_2Q_8
% in TeX
G:=Group("(C2xD4):2Q8");
// GroupNames label
G:=SmallGroup(128,759);
// by ID
G=gap.SmallGroup(128,759);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,64,422,387,2804,1411,718,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=a*b^2*c,e*c*e^-1=a*b*c,e*d*e^-1=d^-1>;
// generators/relations
Export