Copied to
clipboard

G = (C2×Q8)⋊2Q8order 128 = 27

2nd semidirect product of C2×Q8 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×Q8)⋊2Q8, C4⋊C4.87D4, (C22×C4).78D4, C23.586(C2×D4), C4.34(C22⋊Q8), C426C4.13C2, C4.35(C4.4D4), C2.9(C23⋊Q8), C22.212C22≀C2, C2.26(D4.9D4), (C22×C4).720C23, (C2×C42).358C22, C23.38D4.7C2, C22.32(C22⋊Q8), C2.26(D4.10D4), (C22×Q8).62C22, C22.C42.14C2, C42⋊C2.54C22, C22.24(C4.4D4), (C2×M4(2)).221C22, C23.41C23.4C2, C23.67C23.15C2, (C2×C4).16(C2×Q8), (C2×C4).1034(C2×D4), (C2×C4).341(C4○D4), (C2×C4⋊C4).117C22, SmallGroup(128,760)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×Q8)⋊2Q8
C1C2C22C2×C4C22×C4C22×Q8C23.67C23 — (C2×Q8)⋊2Q8
C1C2C22×C4 — (C2×Q8)⋊2Q8
C1C22C22×C4 — (C2×Q8)⋊2Q8
C1C2C2C22×C4 — (C2×Q8)⋊2Q8

Generators and relations for (C2×Q8)⋊2Q8
 G = < a,b,c,d,e | a2=b4=d4=1, c2=b2, e2=d2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc-1=dbd-1=b-1, be=eb, dcd-1=ab2c, ece-1=ab-1c, ede-1=d-1 >

Subgroups: 256 in 123 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, Q8⋊C4, C2×C42, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C42.C2, C4⋊Q8, C2×M4(2), C22×Q8, C426C4, C22.C42, C23.67C23, C23.38D4, C23.41C23, (C2×Q8)⋊2Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22≀C2, C22⋊Q8, C4.4D4, C23⋊Q8, D4.9D4, D4.10D4, (C2×Q8)⋊2Q8

Character table of (C2×Q8)⋊2Q8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P8A8B8C8D
 size 11112222224444888888888888
ρ111111111111111111111111111    trivial
ρ21111111111-1-1-1-1-1-11-1-1-1-111111    linear of order 2
ρ31111111111-1-1-1-111-1-1-111-1-1-111    linear of order 2
ρ411111111111111-1-1-111-1-1-1-1-111    linear of order 2
ρ51111111111-1-1-1-11-11111-11-1-1-1-1    linear of order 2
ρ611111111111111-111-1-1-111-1-1-1-1    linear of order 2
ρ7111111111111111-1-1-1-11-1-111-1-1    linear of order 2
ρ81111111111-1-1-1-1-11-111-11-111-1-1    linear of order 2
ρ9222222-2-2-2-2000000-2000020000    orthogonal lifted from D4
ρ102222-2-22-2-2200000002-20000000    orthogonal lifted from D4
ρ112222-2-2-222-20000-200002000000    orthogonal lifted from D4
ρ122222-2-22-2-220000000-220000000    orthogonal lifted from D4
ρ13222222-2-2-2-200000020000-20000    orthogonal lifted from D4
ρ142222-2-2-222-2000020000-2000000    orthogonal lifted from D4
ρ152-2-222-2-2-2220000020000-200000    symplectic lifted from Q8, Schur index 2
ρ162-2-222-2-2-22200000-20000200000    symplectic lifted from Q8, Schur index 2
ρ172-2-22-22-22-220000000000002i-2i00    complex lifted from C4○D4
ρ182-2-22-22-22-22000000000000-2i2i00    complex lifted from C4○D4
ρ192-2-22-222-22-200000000000000-2i2i    complex lifted from C4○D4
ρ202-2-222-222-2-2-2i2i-2i2i000000000000    complex lifted from C4○D4
ρ212-2-22-222-22-2000000000000002i-2i    complex lifted from C4○D4
ρ222-2-222-222-2-22i-2i2i-2i000000000000    complex lifted from C4○D4
ρ2344-4-40000002-2-22000000000000    symplectic lifted from D4.10D4, Schur index 2
ρ2444-4-4000000-222-2000000000000    symplectic lifted from D4.10D4, Schur index 2
ρ254-44-40000002i2i-2i-2i000000000000    complex lifted from D4.9D4
ρ264-44-4000000-2i-2i2i2i000000000000    complex lifted from D4.9D4

Smallest permutation representation of (C2×Q8)⋊2Q8
On 32 points
Generators in S32
(1 12)(2 9)(3 10)(4 11)(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 27)(22 28)(23 25)(24 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 3 17)(2 18 4 20)(5 23 7 21)(6 22 8 24)(9 15 11 13)(10 14 12 16)(25 32 27 30)(26 31 28 29)
(1 19 12 16)(2 18 9 15)(3 17 10 14)(4 20 11 13)(5 28 32 24)(6 27 29 23)(7 26 30 22)(8 25 31 21)
(1 24 12 28)(2 21 9 25)(3 22 10 26)(4 23 11 27)(5 19 32 16)(6 20 29 13)(7 17 30 14)(8 18 31 15)

G:=sub<Sym(32)| (1,12)(2,9)(3,10)(4,11)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,3,17)(2,18,4,20)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,32,27,30)(26,31,28,29), (1,19,12,16)(2,18,9,15)(3,17,10,14)(4,20,11,13)(5,28,32,24)(6,27,29,23)(7,26,30,22)(8,25,31,21), (1,24,12,28)(2,21,9,25)(3,22,10,26)(4,23,11,27)(5,19,32,16)(6,20,29,13)(7,17,30,14)(8,18,31,15)>;

G:=Group( (1,12)(2,9)(3,10)(4,11)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,3,17)(2,18,4,20)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,32,27,30)(26,31,28,29), (1,19,12,16)(2,18,9,15)(3,17,10,14)(4,20,11,13)(5,28,32,24)(6,27,29,23)(7,26,30,22)(8,25,31,21), (1,24,12,28)(2,21,9,25)(3,22,10,26)(4,23,11,27)(5,19,32,16)(6,20,29,13)(7,17,30,14)(8,18,31,15) );

G=PermutationGroup([[(1,12),(2,9),(3,10),(4,11),(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,27),(22,28),(23,25),(24,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,3,17),(2,18,4,20),(5,23,7,21),(6,22,8,24),(9,15,11,13),(10,14,12,16),(25,32,27,30),(26,31,28,29)], [(1,19,12,16),(2,18,9,15),(3,17,10,14),(4,20,11,13),(5,28,32,24),(6,27,29,23),(7,26,30,22),(8,25,31,21)], [(1,24,12,28),(2,21,9,25),(3,22,10,26),(4,23,11,27),(5,19,32,16),(6,20,29,13),(7,17,30,14),(8,18,31,15)]])

Matrix representation of (C2×Q8)⋊2Q8 in GL6(𝔽17)

100000
010000
001000
000100
0000160
0000016
,
100000
010000
004000
0001300
000040
0000013
,
1600000
0160000
0001600
001000
0000013
0000130
,
400000
0130000
000100
001000
000001
000010
,
0130000
1300000
000010
000001
001000
000100

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,13,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

(C2×Q8)⋊2Q8 in GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes_2Q_8
% in TeX

G:=Group("(C2xQ8):2Q8");
// GroupNames label

G:=SmallGroup(128,760);
// by ID

G=gap.SmallGroup(128,760);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,64,422,387,352,2804,1411,718,172,4037]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^4=1,c^2=b^2,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=a*b^2*c,e*c*e^-1=a*b^-1*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of (C2×Q8)⋊2Q8 in TeX

׿
×
𝔽