Copied to
clipboard

G = D4.9D4order 64 = 26

4th non-split extension by D4 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4.9D4, Q8.9D4, C23.6D4, C423C22, M4(2)⋊2C22, 2+ 1+4.1C2, C4≀C23C2, C4.27(C2×D4), C4.4D42C2, C4.D42C2, C8.C221C2, (C2×C4).6C23, (C2×Q8)⋊2C22, C2.16C22≀C2, C4○D4.3C22, (C2×D4).8C22, C22.14(C2×D4), SmallGroup(64,136)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D4.9D4
C1C2C22C2×C4C2×D42+ 1+4 — D4.9D4
C1C2C2×C4 — D4.9D4
C1C2C2×C4 — D4.9D4
C1C2C2C2×C4 — D4.9D4

Generators and relations for D4.9D4
 G = < a,b,c,d | a4=b2=c4=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 153 in 76 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, D4.9D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, D4.9D4

Character table of D4.9D4

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G8A8B
 size 1124444224444888
ρ11111111111111111    trivial
ρ21111-1-1-111-11-1-11-11    linear of order 2
ρ31111-1-1-11111-11-11-1    linear of order 2
ρ4111111111-111-1-1-1-1    linear of order 2
ρ5111-11-11111-1-111-1-1    linear of order 2
ρ6111-1-11-111-1-11-111-1    linear of order 2
ρ7111-1-11-1111-111-1-11    linear of order 2
ρ8111-11-1111-1-1-1-1-111    linear of order 2
ρ922-220002-20-200000    orthogonal lifted from D4
ρ10222020-2-2-20000000    orthogonal lifted from D4
ρ112220-202-2-20000000    orthogonal lifted from D4
ρ1222-2-20002-20200000    orthogonal lifted from D4
ρ1322-20020-2200-20000    orthogonal lifted from D4
ρ1422-200-20-220020000    orthogonal lifted from D4
ρ154-40000000-2i002i000    complex faithful
ρ164-400000002i00-2i000    complex faithful

Permutation representations of D4.9D4
On 16 points - transitive group 16T138
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 12)(2 11)(3 10)(4 9)(5 14)(6 13)(7 16)(8 15)
(5 7)(6 8)(9 12 11 10)(13 14 15 16)
(1 5 3 7)(2 8 4 6)(9 16 11 14)(10 15 12 13)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,14)(6,13)(7,16)(8,15), (5,7)(6,8)(9,12,11,10)(13,14,15,16), (1,5,3,7)(2,8,4,6)(9,16,11,14)(10,15,12,13)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,14)(6,13)(7,16)(8,15), (5,7)(6,8)(9,12,11,10)(13,14,15,16), (1,5,3,7)(2,8,4,6)(9,16,11,14)(10,15,12,13) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,12),(2,11),(3,10),(4,9),(5,14),(6,13),(7,16),(8,15)], [(5,7),(6,8),(9,12,11,10),(13,14,15,16)], [(1,5,3,7),(2,8,4,6),(9,16,11,14),(10,15,12,13)]])

G:=TransitiveGroup(16,138);

On 16 points - transitive group 16T145
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 3)(5 6)(7 8)(9 11)(13 14)(15 16)
(1 6 12 15)(2 7 9 16)(3 8 10 13)(4 5 11 14)
(1 16 3 14)(2 15 4 13)(5 12 7 10)(6 11 8 9)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,6)(7,8)(9,11)(13,14)(15,16), (1,6,12,15)(2,7,9,16)(3,8,10,13)(4,5,11,14), (1,16,3,14)(2,15,4,13)(5,12,7,10)(6,11,8,9)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,6)(7,8)(9,11)(13,14)(15,16), (1,6,12,15)(2,7,9,16)(3,8,10,13)(4,5,11,14), (1,16,3,14)(2,15,4,13)(5,12,7,10)(6,11,8,9) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,3),(5,6),(7,8),(9,11),(13,14),(15,16)], [(1,6,12,15),(2,7,9,16),(3,8,10,13),(4,5,11,14)], [(1,16,3,14),(2,15,4,13),(5,12,7,10),(6,11,8,9)]])

G:=TransitiveGroup(16,145);

On 16 points - transitive group 16T175
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 8)(2 7)(3 6)(4 5)(9 13)(10 16)(11 15)(12 14)
(1 12 3 10)(2 9 4 11)(5 14)(6 15)(7 16)(8 13)
(1 11 3 9)(2 10 4 12)(5 13 7 15)(6 16 8 14)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,8)(2,7)(3,6)(4,5)(9,13)(10,16)(11,15)(12,14), (1,12,3,10)(2,9,4,11)(5,14)(6,15)(7,16)(8,13), (1,11,3,9)(2,10,4,12)(5,13,7,15)(6,16,8,14)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,8)(2,7)(3,6)(4,5)(9,13)(10,16)(11,15)(12,14), (1,12,3,10)(2,9,4,11)(5,14)(6,15)(7,16)(8,13), (1,11,3,9)(2,10,4,12)(5,13,7,15)(6,16,8,14) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,8),(2,7),(3,6),(4,5),(9,13),(10,16),(11,15),(12,14)], [(1,12,3,10),(2,9,4,11),(5,14),(6,15),(7,16),(8,13)], [(1,11,3,9),(2,10,4,12),(5,13,7,15),(6,16,8,14)]])

G:=TransitiveGroup(16,175);

D4.9D4 is a maximal subgroup of
C42.313C23  M4(2)⋊C23  D811D4  Q8.4S4  Q8.S4
 C42⋊D2p: C424D4  C425D4  C425D6  C427D6  M4(2)⋊D10  C425D10  M4(2)⋊D14  C425D14 ...
 D4p.D4: D8.13D4  D8○SD16  M4(2)⋊D6  D12.39D4  D20.1D4  D20.39D4  D28.1D4  D28.39D4 ...
 (Cp×Q8).D4: C42.2D4  C42.14D4  C42.13C23  2+ 1+4.4S3  2+ 1+4.D5  2+ 1+4.D7 ...
D4.9D4 is a maximal quotient of
C232SD16  C23⋊Q16  C24.12D4  C23.5D8  C24.14D4  C24.15D4  D4.D8  C42.201C23  Q8.D8  Q83SD16  D4.5SD16  D43Q16  Q83Q16  C42.207C23  C42.5C23  C42.7C23  C42.8C23  C42.10C23  C24.21D4  C429(C2×C4)  C24.23D4  (C2×Q8)⋊2Q8  C423Q8
 C42⋊D2p: C4210D4  C4212D4  C425D6  C427D6  M4(2)⋊D10  C425D10  M4(2)⋊D14  C425D14 ...
 M4(2)⋊D2p: M4(2)⋊4D4  M4(2)⋊6D4  M4(2)⋊D6  D12.39D4  D20.1D4  D20.39D4  D28.1D4  D28.39D4 ...
 C4○D4.D2p: 2+ 1+43C4  C8.C22⋊C4  2+ 1+4.4S3  2+ 1+4.D5  2+ 1+4.D7 ...

Matrix representation of D4.9D4 in GL4(𝔽5) generated by

2000
0300
0020
0003
,
0300
2000
0003
0020
,
3000
0100
0040
0003
,
0001
0030
0300
4000
G:=sub<GL(4,GF(5))| [2,0,0,0,0,3,0,0,0,0,2,0,0,0,0,3],[0,2,0,0,3,0,0,0,0,0,0,2,0,0,3,0],[3,0,0,0,0,1,0,0,0,0,4,0,0,0,0,3],[0,0,0,4,0,0,3,0,0,3,0,0,1,0,0,0] >;

D4.9D4 in GAP, Magma, Sage, TeX

D_4._9D_4
% in TeX

G:=Group("D4.9D4");
// GroupNames label

G:=SmallGroup(64,136);
// by ID

G=gap.SmallGroup(64,136);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,963,489,255,117,730]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

Export

Character table of D4.9D4 in TeX

׿
×
𝔽