Copied to
clipboard

G = C23⋊SD16order 128 = 27

1st semidirect product of C23 and SD16 acting via SD16/C2=D4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.8D4, C231SD16, C4⋊C42D4, (C2×Q8)⋊1D4, C23⋊C89C2, C2.5C2≀C22, C232Q81C2, (C22×C4).41D4, C22⋊SD1625C2, C2.7(D44D4), C2.6(Q8⋊D4), C23.513(C2×D4), C232D4.2C2, (C22×C4).2C23, C22⋊Q8.1C22, C22.12(C2×SD16), (C22×D4).3C22, C22.123C22≀C2, C23.31D410C2, C22⋊C8.109C22, C22.27(C8.C22), C2.C42.11C22, (C2×C4).191(C2×D4), (C2×C22⋊C4).91C22, SmallGroup(128,328)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C23⋊SD16
C1C2C22C23C22×C4C2×C22⋊C4C232Q8 — C23⋊SD16
C1C22C22×C4 — C23⋊SD16
C1C22C22×C4 — C23⋊SD16
C1C2C22C22×C4 — C23⋊SD16

Generators and relations for C23⋊SD16
 G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, eae=ab=ba, ac=ca, dad-1=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 460 in 158 conjugacy classes, 34 normal (18 characteristic)
C1, C2 [×3], C2 [×6], C4 [×9], C22 [×3], C22 [×19], C8 [×2], C2×C4 [×2], C2×C4 [×13], D4 [×14], Q8 [×3], C23, C23 [×2], C23 [×12], C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×5], C2×C8 [×2], SD16 [×4], C22×C4 [×2], C22×C4 [×3], C2×D4 [×10], C2×Q8 [×2], C2×Q8, C24, C24, C2.C42, C22⋊C8 [×2], D4⋊C4 [×2], C2×C22⋊C4, C2×C22⋊C4 [×2], C22⋊Q8 [×2], C22⋊Q8 [×5], C2×SD16 [×2], C22×D4, C22×D4, C23⋊C8, C23.31D4 [×2], C232D4, C22⋊SD16 [×2], C232Q8, C23⋊SD16
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, SD16 [×2], C2×D4 [×3], C22≀C2, C2×SD16, C8.C22, Q8⋊D4, D44D4, C2≀C22, C23⋊SD16

Character table of C23⋊SD16

 class 12A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I8A8B8C8D
 size 11112244884488888888888
ρ111111111111111111111111    trivial
ρ2111111-1-1-1-1111-11-1-111-11-11    linear of order 2
ρ3111111-1-11111-11-1-11-1-1-11-11    linear of order 2
ρ411111111-1-111-1-1-11-1-1-11111    linear of order 2
ρ511111111-1-111-111111-1-1-1-1-1    linear of order 2
ρ6111111-1-11111-1-11-1-11-11-11-1    linear of order 2
ρ7111111-1-1-1-11111-1-11-111-11-1    linear of order 2
ρ81111111111111-1-11-1-11-1-1-1-1    linear of order 2
ρ9222222-2-200-2-200020000000    orthogonal lifted from D4
ρ102222-2-200002-20-2002000000    orthogonal lifted from D4
ρ112222-2-20000-2200-200200000    orthogonal lifted from D4
ρ122222-2-200002-20200-2000000    orthogonal lifted from D4
ρ132222222200-2-2000-20000000    orthogonal lifted from D4
ρ142222-2-20000-2200200-200000    orthogonal lifted from D4
ρ1522-2-2-222-200000000000-2-2--2--2    complex lifted from SD16
ρ1622-2-2-22-2200000000000--2-2-2--2    complex lifted from SD16
ρ1722-2-2-222-200000000000--2--2-2-2    complex lifted from SD16
ρ1822-2-2-22-2200000000000-2--2--2-2    complex lifted from SD16
ρ194-4-4400000000-20000020000    orthogonal lifted from D44D4
ρ204-44-40000-220000000000000    orthogonal lifted from C2≀C22
ρ214-4-4400000000200000-20000    orthogonal lifted from D44D4
ρ224-44-400002-20000000000000    orthogonal lifted from C2≀C22
ρ2344-4-44-400000000000000000    symplectic lifted from C8.C22, Schur index 2

Permutation representations of C23⋊SD16
On 16 points - transitive group 16T405
Generators in S16
(2 10)(3 11)(6 14)(7 15)
(2 10)(4 12)(6 14)(8 16)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 13)(2 16)(3 11)(4 14)(5 9)(6 12)(7 15)(8 10)

G:=sub<Sym(16)| (2,10)(3,11)(6,14)(7,15), (2,10)(4,12)(6,14)(8,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)>;

G:=Group( (2,10)(3,11)(6,14)(7,15), (2,10)(4,12)(6,14)(8,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10) );

G=PermutationGroup([(2,10),(3,11),(6,14),(7,15)], [(2,10),(4,12),(6,14),(8,16)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,13),(2,16),(3,11),(4,14),(5,9),(6,12),(7,15),(8,10)])

G:=TransitiveGroup(16,405);

Matrix representation of C23⋊SD16 in GL6(𝔽17)

1600000
0160000
001000
0001600
000010
0000016
,
100000
010000
001000
000100
0000160
0000016
,
100000
010000
0016000
0001600
0000160
0000016
,
750000
700000
000010
000001
000100
001000
,
1600000
1510000
001000
000100
000001
000010

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[7,7,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[16,15,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C23⋊SD16 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C2^3:SD16");
// GroupNames label

G:=SmallGroup(128,328);
// by ID

G=gap.SmallGroup(128,328);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,232,422,1123,570,521,136,1411]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

Export

Character table of C23⋊SD16 in TeX

׿
×
𝔽