p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊2D4, C22⋊3SD16, C23.42D4, C22⋊C8⋊8C2, C4.20(C2×D4), (C2×C4).23D4, Q8⋊C4⋊9C2, C2.9C22≀C2, (C2×SD16)⋊7C2, C4⋊D4.2C2, C4⋊C4.1C22, (C22×Q8)⋊2C2, C2.5(C2×SD16), (C2×C4).82C23, (C2×C8).27C22, (C2×D4).5C22, C22.78(C2×D4), C2.6(C8.C22), (C2×Q8).48C22, (C22×C4).43C22, SmallGroup(64,129)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊D4
G = < a,b,c,d | a4=c4=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=dbd=a-1b, dcd=c-1 >
Subgroups: 145 in 79 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, Q8⋊D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C8.C22, Q8⋊D4
Character table of Q8⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 32 3 30)(2 31 4 29)(5 9 7 11)(6 12 8 10)(13 25 15 27)(14 28 16 26)(17 23 19 21)(18 22 20 24)
(1 20 9 14)(2 19 10 13)(3 18 11 16)(4 17 12 15)(5 27 30 23)(6 26 31 22)(7 25 32 21)(8 28 29 24)
(2 4)(5 6)(7 8)(10 12)(13 17)(14 20)(15 19)(16 18)(21 28)(22 27)(23 26)(24 25)(29 32)(30 31)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,3,30)(2,31,4,29)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,23,19,21)(18,22,20,24), (1,20,9,14)(2,19,10,13)(3,18,11,16)(4,17,12,15)(5,27,30,23)(6,26,31,22)(7,25,32,21)(8,28,29,24), (2,4)(5,6)(7,8)(10,12)(13,17)(14,20)(15,19)(16,18)(21,28)(22,27)(23,26)(24,25)(29,32)(30,31)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,3,30)(2,31,4,29)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,23,19,21)(18,22,20,24), (1,20,9,14)(2,19,10,13)(3,18,11,16)(4,17,12,15)(5,27,30,23)(6,26,31,22)(7,25,32,21)(8,28,29,24), (2,4)(5,6)(7,8)(10,12)(13,17)(14,20)(15,19)(16,18)(21,28)(22,27)(23,26)(24,25)(29,32)(30,31) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,32,3,30),(2,31,4,29),(5,9,7,11),(6,12,8,10),(13,25,15,27),(14,28,16,26),(17,23,19,21),(18,22,20,24)], [(1,20,9,14),(2,19,10,13),(3,18,11,16),(4,17,12,15),(5,27,30,23),(6,26,31,22),(7,25,32,21),(8,28,29,24)], [(2,4),(5,6),(7,8),(10,12),(13,17),(14,20),(15,19),(16,18),(21,28),(22,27),(23,26),(24,25),(29,32),(30,31)]])
Q8⋊D4 is a maximal subgroup of
C24.103D4 C24.105D4 C42.226D4 C42.230D4 C42.235D4 C23⋊4SD16 C24.123D4 C24.126D4 C24.129D4 C4.152+ 1+4 C4.162+ 1+4 C42.269D4 C42.271D4 C42.276D4 Q8⋊3S4 C23.16S4 Q8⋊S4
(Cp×Q8)⋊D4: C24.178D4 (C2×Q8)⋊16D4 (C2×Q8)⋊17D4 Q8⋊3D12 D6⋊8SD16 (C3×Q8)⋊13D4 Q8⋊2D20 D10⋊8SD16 ...
C4⋊C4.D2p: C23⋊2SD16 C4⋊C4.6D4 Q8⋊D4⋊C2 C24.12D4 C42.355C23 C42.360C23 C42.407C23 C42.411C23 ...
(C2×C2p)⋊SD16: C42.223D4 C42.264D4 Dic6⋊14D4 Dic10⋊14D4 Dic14⋊14D4 ...
Q8⋊D4 is a maximal quotient of
C24.155D4 (C2×C4)⋊3SD16
Q8⋊D4p: Q8⋊3D8 Q8⋊3D12 Q8⋊2D20 Q8⋊2D28 ...
D2p⋊SD16: D4⋊SD16 D6⋊8SD16 D10⋊8SD16 Dic14⋊7D4 ...
(Cp×Q8)⋊D4: C23⋊SD16 C23⋊3SD16 (C3×Q8)⋊13D4 (C5×Q8)⋊13D4 (C7×Q8)⋊13D4 ...
C4⋊C4.D2p: (C2×C4)⋊SD16 C24.14D4 (C2×C4).SD16 Q8⋊SD16 Q8⋊6SD16 D4.5SD16 Q8⋊3Q16 Q8⋊4SD16 ...
C23.D4p: C23.38D8 Dic6⋊14D4 Dic10⋊14D4 Dic14⋊14D4 ...
Matrix representation of Q8⋊D4 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
5 | 5 | 0 | 0 |
5 | 12 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 16 | 16 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[5,5,0,0,5,12,0,0,0,0,1,0,0,0,2,16],[16,0,0,0,0,1,0,0,0,0,1,16,0,0,2,16],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;
Q8⋊D4 in GAP, Magma, Sage, TeX
Q_8\rtimes D_4
% in TeX
G:=Group("Q8:D4");
// GroupNames label
G:=SmallGroup(64,129);
// by ID
G=gap.SmallGroup(64,129);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,199,362,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^4=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export