Copied to
clipboard

G = C4⋊C4.D4order 128 = 27

1st non-split extension by C4⋊C4 of D4 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4⋊C4.1D4, (C2×D4).9D4, (C2×Q8).9D4, C2.6C2≀C22, C22⋊D8.1C2, (C22×C4).12D4, C22⋊SD1626C2, C2.8(D4⋊D4), C23.514(C2×D4), C4⋊D4.2C22, (C22×C4).3C23, C22⋊Q8.2C22, C2.6(D4.8D4), C22.20(C4○D8), C23.10D41C2, C23.31D44C2, C22.SD1610C2, (C22×D4).4C22, C22.124C22≀C2, C22⋊C8.110C22, C22.18(C8⋊C22), C22.33C241C2, C22.M4(2)⋊5C2, C2.C42.12C22, (C2×C4).192(C2×D4), (C2×C4⋊C4).13C22, SmallGroup(128,329)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C4⋊C4.D4
C1C2C22C23C22×C4C2×C4⋊C4C22.33C24 — C4⋊C4.D4
C1C22C22×C4 — C4⋊C4.D4
C1C22C22×C4 — C4⋊C4.D4
C1C2C22C22×C4 — C4⋊C4.D4

Generators and relations for C4⋊C4.D4
 G = < a,b,c,d | a4=b4=d2=1, c4=a2, bab-1=dad=a-1, cac-1=a-1b2, cbc-1=a-1b, dbd=ab, dcd=a2c3 >

Subgroups: 380 in 136 conjugacy classes, 32 normal (all characteristic)
C1, C2 [×3], C2 [×5], C4 [×8], C22 [×3], C22 [×15], C8 [×2], C2×C4 [×2], C2×C4 [×13], D4 [×9], Q8, C23, C23 [×9], C42, C22⋊C4 [×9], C4⋊C4 [×2], C4⋊C4 [×6], C2×C8 [×2], D8 [×2], SD16 [×2], C22×C4 [×3], C22×C4 [×2], C2×D4, C2×D4 [×5], C2×Q8, C24, C2.C42, C22⋊C8 [×2], D4⋊C4 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4 [×2], C42.C2, C422C2, C2×D8, C2×SD16, C22×D4, C22.M4(2), C22.SD16, C23.31D4, C23.10D4, C22⋊D8, C22⋊SD16, C22.33C24, C4⋊C4.D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, C2×D4 [×3], C22≀C2, C4○D8, C8⋊C22, D4⋊D4, D4.8D4, C2≀C22, C4⋊C4.D4

Character table of C4⋊C4.D4

 class 12A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I4J8A8B8C8D
 size 11112288844448888888888
ρ111111111111111111111111    trivial
ρ21111111-11-1-111-11-11-1-11-11-1    linear of order 2
ρ3111111-11-11111-11111-1-1-1-1-1    linear of order 2
ρ4111111-1-1-1-1-11111-11-11-11-11    linear of order 2
ρ51111111-1111111-1-1-111-1-1-1-1    linear of order 2
ρ6111111111-1-111-1-11-1-1-1-11-11    linear of order 2
ρ7111111-1-1-11111-1-1-1-11-11111    linear of order 2
ρ8111111-11-1-1-1111-11-1-111-11-1    linear of order 2
ρ92222-2-200000-220-202000000    orthogonal lifted from D4
ρ10222222000-2-2-2-20000200000    orthogonal lifted from D4
ρ112222-2-2020002-200-20000000    orthogonal lifted from D4
ρ1222222200022-2-20000-200000    orthogonal lifted from D4
ρ132222-2-200000-22020-2000000    orthogonal lifted from D4
ρ142222-2-20-20002-20020000000    orthogonal lifted from D4
ρ1522-2-2-22000-2i2i00000000-2-2--22    complex lifted from C4○D8
ρ1622-2-2-22000-2i2i00000000--22-2-2    complex lifted from C4○D8
ρ1722-2-2-220002i-2i00000000-22--2-2    complex lifted from C4○D8
ρ1822-2-2-220002i-2i00000000--2-2-22    complex lifted from C4○D8
ρ194-44-40020-200000000000000    orthogonal lifted from C2≀C22
ρ204-44-400-20200000000000000    orthogonal lifted from C2≀C22
ρ2144-4-44-400000000000000000    orthogonal lifted from C8⋊C22
ρ224-4-440000000002i0000-2i0000    complex lifted from D4.8D4
ρ234-4-44000000000-2i00002i0000    complex lifted from D4.8D4

Smallest permutation representation of C4⋊C4.D4
On 32 points
Generators in S32
(1 29 5 25)(2 4 6 8)(3 31 7 27)(9 19 13 23)(10 12 14 16)(11 21 15 17)(18 20 22 24)(26 28 30 32)
(1 26 31 4)(2 29 32 7)(3 6 25 28)(5 30 27 8)(9 16 21 20)(10 11 22 23)(12 17 24 13)(14 15 18 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11)(2 10)(3 9)(4 16)(5 15)(6 14)(7 13)(8 12)(17 29)(18 28)(19 27)(20 26)(21 25)(22 32)(23 31)(24 30)

G:=sub<Sym(32)| (1,29,5,25)(2,4,6,8)(3,31,7,27)(9,19,13,23)(10,12,14,16)(11,21,15,17)(18,20,22,24)(26,28,30,32), (1,26,31,4)(2,29,32,7)(3,6,25,28)(5,30,27,8)(9,16,21,20)(10,11,22,23)(12,17,24,13)(14,15,18,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11)(2,10)(3,9)(4,16)(5,15)(6,14)(7,13)(8,12)(17,29)(18,28)(19,27)(20,26)(21,25)(22,32)(23,31)(24,30)>;

G:=Group( (1,29,5,25)(2,4,6,8)(3,31,7,27)(9,19,13,23)(10,12,14,16)(11,21,15,17)(18,20,22,24)(26,28,30,32), (1,26,31,4)(2,29,32,7)(3,6,25,28)(5,30,27,8)(9,16,21,20)(10,11,22,23)(12,17,24,13)(14,15,18,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11)(2,10)(3,9)(4,16)(5,15)(6,14)(7,13)(8,12)(17,29)(18,28)(19,27)(20,26)(21,25)(22,32)(23,31)(24,30) );

G=PermutationGroup([(1,29,5,25),(2,4,6,8),(3,31,7,27),(9,19,13,23),(10,12,14,16),(11,21,15,17),(18,20,22,24),(26,28,30,32)], [(1,26,31,4),(2,29,32,7),(3,6,25,28),(5,30,27,8),(9,16,21,20),(10,11,22,23),(12,17,24,13),(14,15,18,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11),(2,10),(3,9),(4,16),(5,15),(6,14),(7,13),(8,12),(17,29),(18,28),(19,27),(20,26),(21,25),(22,32),(23,31),(24,30)])

Matrix representation of C4⋊C4.D4 in GL6(𝔽17)

550000
5120000
0001600
0016000
0016161615
001101
,
210000
12150000
000010
001112
0016000
000161616
,
520000
210000
000010
0016161615
000100
000001
,
040000
1300000
001000
000100
0016161615
000001

G:=sub<GL(6,GF(17))| [5,5,0,0,0,0,5,12,0,0,0,0,0,0,0,16,16,1,0,0,16,0,16,1,0,0,0,0,16,0,0,0,0,0,15,1],[2,12,0,0,0,0,1,15,0,0,0,0,0,0,0,1,16,0,0,0,0,1,0,16,0,0,1,1,0,16,0,0,0,2,0,16],[5,2,0,0,0,0,2,1,0,0,0,0,0,0,0,16,0,0,0,0,0,16,1,0,0,0,1,16,0,0,0,0,0,15,0,1],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,1,0,16,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,15,1] >;

C4⋊C4.D4 in GAP, Magma, Sage, TeX

C_4\rtimes C_4.D_4
% in TeX

G:=Group("C4:C4.D4");
// GroupNames label

G:=SmallGroup(128,329);
// by ID

G=gap.SmallGroup(128,329);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,422,184,1123,570,521,136,1411]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=a^2,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^-1*b^2,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=a^2*c^3>;
// generators/relations

Export

Character table of C4⋊C4.D4 in TeX

׿
×
𝔽