Copied to
clipboard

?

G = C2×C84Q8order 128 = 27

Direct product of C2 and C84Q8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C84Q8, C42.689C23, C87(C2×Q8), (C2×C8)⋊15Q8, C4(C84Q8), C4.51(C4×Q8), (C4×Q8).25C4, C22.33(C4×Q8), C4.63(C22×Q8), C4⋊C8.357C22, C42.285(C2×C4), (C2×C8).423C23, (C2×C4).656C24, (C4×C8).436C22, C4.13(C2×M4(2)), (C2×C4).52M4(2), (C22×Q8).30C4, C22.44(C8○D4), (C4×Q8).276C22, C8⋊C4.157C22, C22.182(C23×C4), (C2×C42).770C22, (C22×C8).443C22, C23.294(C22×C4), C22.64(C2×M4(2)), C2.13(C22×M4(2)), (C22×C4).1651C23, (C2×C4×C8).68C2, C2.23(C2×C4×Q8), (C2×C4⋊C8).57C2, (C2×C4⋊C4).73C4, (C2×C4×Q8).43C2, (C2×C4)(C84Q8), C2.20(C2×C8○D4), C4⋊C4.223(C2×C4), C4.307(C2×C4○D4), (C2×C4).358(C2×Q8), (C2×C8⋊C4).38C2, (C2×Q8).208(C2×C4), (C2×C4).959(C4○D4), (C22×C4).418(C2×C4), (C2×C4).270(C22×C4), SmallGroup(128,1691)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C84Q8
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C2×C84Q8
C1C22 — C2×C84Q8
C1C22×C4 — C2×C84Q8
C1C2C2C2×C4 — C2×C84Q8

Subgroups: 244 in 200 conjugacy classes, 156 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×6], C4 [×10], C22, C22 [×6], C8 [×4], C8 [×6], C2×C4 [×2], C2×C4 [×20], C2×C4 [×10], Q8 [×8], C23, C42 [×12], C4⋊C4 [×12], C2×C8 [×12], C2×C8 [×6], C22×C4 [×3], C22×C4 [×4], C2×Q8 [×4], C2×Q8 [×4], C4×C8 [×4], C8⋊C4 [×8], C4⋊C8 [×12], C2×C42, C2×C42 [×2], C2×C4⋊C4, C2×C4⋊C4 [×2], C4×Q8 [×8], C22×C8 [×2], C22×C8 [×2], C22×Q8, C2×C4×C8, C2×C8⋊C4 [×2], C2×C4⋊C8, C2×C4⋊C8 [×2], C84Q8 [×8], C2×C4×Q8, C2×C84Q8

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], Q8 [×4], C23 [×15], M4(2) [×4], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×2], C24, C4×Q8 [×4], C2×M4(2) [×6], C8○D4 [×2], C23×C4, C22×Q8, C2×C4○D4, C84Q8 [×4], C2×C4×Q8, C22×M4(2), C2×C8○D4, C2×C84Q8

Generators and relations
 G = < a,b,c,d | a2=b8=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)(25 103)(26 104)(27 97)(28 98)(29 99)(30 100)(31 101)(32 102)(33 77)(34 78)(35 79)(36 80)(37 73)(38 74)(39 75)(40 76)(49 60)(50 61)(51 62)(52 63)(53 64)(54 57)(55 58)(56 59)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 105)(81 94)(82 95)(83 96)(84 89)(85 90)(86 91)(87 92)(88 93)(113 126)(114 127)(115 128)(116 121)(117 122)(118 123)(119 124)(120 125)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 38 45 63)(2 39 46 64)(3 40 47 57)(4 33 48 58)(5 34 41 59)(6 35 42 60)(7 36 43 61)(8 37 44 62)(9 73 18 51)(10 74 19 52)(11 75 20 53)(12 76 21 54)(13 77 22 55)(14 78 23 56)(15 79 24 49)(16 80 17 50)(25 67 120 89)(26 68 113 90)(27 69 114 91)(28 70 115 92)(29 71 116 93)(30 72 117 94)(31 65 118 95)(32 66 119 96)(81 100 105 122)(82 101 106 123)(83 102 107 124)(84 103 108 125)(85 104 109 126)(86 97 110 127)(87 98 111 128)(88 99 112 121)
(1 72 45 94)(2 69 46 91)(3 66 47 96)(4 71 48 93)(5 68 41 90)(6 65 42 95)(7 70 43 92)(8 67 44 89)(9 108 18 84)(10 105 19 81)(11 110 20 86)(12 107 21 83)(13 112 22 88)(14 109 23 85)(15 106 24 82)(16 111 17 87)(25 62 120 37)(26 59 113 34)(27 64 114 39)(28 61 115 36)(29 58 116 33)(30 63 117 38)(31 60 118 35)(32 57 119 40)(49 123 79 101)(50 128 80 98)(51 125 73 103)(52 122 74 100)(53 127 75 97)(54 124 76 102)(55 121 77 99)(56 126 78 104)

G:=sub<Sym(128)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,103)(26,104)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(33,77)(34,78)(35,79)(36,80)(37,73)(38,74)(39,75)(40,76)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(113,126)(114,127)(115,128)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,38,45,63)(2,39,46,64)(3,40,47,57)(4,33,48,58)(5,34,41,59)(6,35,42,60)(7,36,43,61)(8,37,44,62)(9,73,18,51)(10,74,19,52)(11,75,20,53)(12,76,21,54)(13,77,22,55)(14,78,23,56)(15,79,24,49)(16,80,17,50)(25,67,120,89)(26,68,113,90)(27,69,114,91)(28,70,115,92)(29,71,116,93)(30,72,117,94)(31,65,118,95)(32,66,119,96)(81,100,105,122)(82,101,106,123)(83,102,107,124)(84,103,108,125)(85,104,109,126)(86,97,110,127)(87,98,111,128)(88,99,112,121), (1,72,45,94)(2,69,46,91)(3,66,47,96)(4,71,48,93)(5,68,41,90)(6,65,42,95)(7,70,43,92)(8,67,44,89)(9,108,18,84)(10,105,19,81)(11,110,20,86)(12,107,21,83)(13,112,22,88)(14,109,23,85)(15,106,24,82)(16,111,17,87)(25,62,120,37)(26,59,113,34)(27,64,114,39)(28,61,115,36)(29,58,116,33)(30,63,117,38)(31,60,118,35)(32,57,119,40)(49,123,79,101)(50,128,80,98)(51,125,73,103)(52,122,74,100)(53,127,75,97)(54,124,76,102)(55,121,77,99)(56,126,78,104)>;

G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,103)(26,104)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(33,77)(34,78)(35,79)(36,80)(37,73)(38,74)(39,75)(40,76)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(113,126)(114,127)(115,128)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,38,45,63)(2,39,46,64)(3,40,47,57)(4,33,48,58)(5,34,41,59)(6,35,42,60)(7,36,43,61)(8,37,44,62)(9,73,18,51)(10,74,19,52)(11,75,20,53)(12,76,21,54)(13,77,22,55)(14,78,23,56)(15,79,24,49)(16,80,17,50)(25,67,120,89)(26,68,113,90)(27,69,114,91)(28,70,115,92)(29,71,116,93)(30,72,117,94)(31,65,118,95)(32,66,119,96)(81,100,105,122)(82,101,106,123)(83,102,107,124)(84,103,108,125)(85,104,109,126)(86,97,110,127)(87,98,111,128)(88,99,112,121), (1,72,45,94)(2,69,46,91)(3,66,47,96)(4,71,48,93)(5,68,41,90)(6,65,42,95)(7,70,43,92)(8,67,44,89)(9,108,18,84)(10,105,19,81)(11,110,20,86)(12,107,21,83)(13,112,22,88)(14,109,23,85)(15,106,24,82)(16,111,17,87)(25,62,120,37)(26,59,113,34)(27,64,114,39)(28,61,115,36)(29,58,116,33)(30,63,117,38)(31,60,118,35)(32,57,119,40)(49,123,79,101)(50,128,80,98)(51,125,73,103)(52,122,74,100)(53,127,75,97)(54,124,76,102)(55,121,77,99)(56,126,78,104) );

G=PermutationGroup([(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42),(25,103),(26,104),(27,97),(28,98),(29,99),(30,100),(31,101),(32,102),(33,77),(34,78),(35,79),(36,80),(37,73),(38,74),(39,75),(40,76),(49,60),(50,61),(51,62),(52,63),(53,64),(54,57),(55,58),(56,59),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,105),(81,94),(82,95),(83,96),(84,89),(85,90),(86,91),(87,92),(88,93),(113,126),(114,127),(115,128),(116,121),(117,122),(118,123),(119,124),(120,125)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,38,45,63),(2,39,46,64),(3,40,47,57),(4,33,48,58),(5,34,41,59),(6,35,42,60),(7,36,43,61),(8,37,44,62),(9,73,18,51),(10,74,19,52),(11,75,20,53),(12,76,21,54),(13,77,22,55),(14,78,23,56),(15,79,24,49),(16,80,17,50),(25,67,120,89),(26,68,113,90),(27,69,114,91),(28,70,115,92),(29,71,116,93),(30,72,117,94),(31,65,118,95),(32,66,119,96),(81,100,105,122),(82,101,106,123),(83,102,107,124),(84,103,108,125),(85,104,109,126),(86,97,110,127),(87,98,111,128),(88,99,112,121)], [(1,72,45,94),(2,69,46,91),(3,66,47,96),(4,71,48,93),(5,68,41,90),(6,65,42,95),(7,70,43,92),(8,67,44,89),(9,108,18,84),(10,105,19,81),(11,110,20,86),(12,107,21,83),(13,112,22,88),(14,109,23,85),(15,106,24,82),(16,111,17,87),(25,62,120,37),(26,59,113,34),(27,64,114,39),(28,61,115,36),(29,58,116,33),(30,63,117,38),(31,60,118,35),(32,57,119,40),(49,123,79,101),(50,128,80,98),(51,125,73,103),(52,122,74,100),(53,127,75,97),(54,124,76,102),(55,121,77,99),(56,126,78,104)])

Matrix representation G ⊆ GL5(𝔽17)

160000
01000
00100
000160
000016
,
10000
00100
013000
00001
00040
,
160000
00900
015000
00010
00001
,
10000
001500
09000
000119
000156

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,0,13,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,1,0],[16,0,0,0,0,0,0,15,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,9,0,0,0,15,0,0,0,0,0,0,11,15,0,0,0,9,6] >;

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P4Q···4X8A···8P8Q···8X
order12···24···44···44···48···88···8
size11···11···12···24···42···24···4

56 irreducible representations

dim1111111112222
type++++++-
imageC1C2C2C2C2C2C4C4C4Q8M4(2)C4○D4C8○D4
kernelC2×C84Q8C2×C4×C8C2×C8⋊C4C2×C4⋊C8C84Q8C2×C4×Q8C2×C4⋊C4C4×Q8C22×Q8C2×C8C2×C4C2×C4C22
# reps1123816824848

In GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_4Q_8
% in TeX

G:=Group("C2xC8:4Q8");
// GroupNames label

G:=SmallGroup(128,1691);
// by ID

G=gap.SmallGroup(128,1691);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,1430,268,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽