p-group, metabelian, nilpotent (class 2), monomial
Aliases: D4⋊7M4(2), C42.692C23, C4.1682+ (1+4), (C8×D4)⋊45C2, C8⋊9D4⋊40C2, C8⋊6D4⋊39C2, C4⋊C8⋊90C22, (C4×C8)⋊59C22, D4○3(C22⋊C8), (C4×D4).34C4, C24.85(C2×C4), C8⋊C4⋊30C22, C22⋊C8⋊79C22, C42.222(C2×C4), (C2×C4).671C24, (C2×C8).432C23, (C22×C8)⋊55C22, (C22×D4).43C4, C4.35(C2×M4(2)), C24.4C4⋊35C2, C42.6C4⋊51C2, (C4×D4).363C22, C22.16(C8○D4), C42.12C4⋊52C2, C22.7(C2×M4(2)), (C2×M4(2))⋊45C22, C22.195(C23×C4), (C22×C4).939C23, (C23×C4).530C22, (C2×C42).781C22, C23.229(C22×C4), C2.19(C22×M4(2)), C2.45(C22.11C24), (C2×C4×D4).77C2, (C2×C4⋊C4).77C4, C2.27(C2×C8○D4), C4⋊C4.229(C2×C4), (C2×C22⋊C8)⋊46C2, (C2×D4).235(C2×C4), (C2×C22⋊C4).51C4, C22⋊C4.77(C2×C4), (C2×C4).276(C22×C4), (C22×C4).352(C2×C4), SmallGroup(128,1706)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 388 in 232 conjugacy classes, 136 normal (36 characteristic)
C1, C2 [×3], C2 [×8], C4 [×4], C4 [×8], C22, C22 [×6], C22 [×20], C8 [×8], C2×C4 [×6], C2×C4 [×4], C2×C4 [×20], D4 [×4], D4 [×6], C23, C23 [×4], C23 [×10], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×8], C2×C8 [×4], M4(2) [×4], C22×C4 [×3], C22×C4 [×10], C22×C4 [×4], C2×D4 [×2], C2×D4 [×2], C2×D4 [×4], C24 [×2], C4×C8 [×2], C8⋊C4 [×2], C22⋊C8 [×2], C22⋊C8 [×10], C4⋊C8 [×4], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×4], C4×D4 [×4], C22×C8 [×4], C2×M4(2) [×4], C23×C4 [×2], C22×D4, C2×C22⋊C8 [×2], C24.4C4 [×2], C42.12C4, C42.6C4, C8×D4 [×2], C8⋊9D4 [×4], C8⋊6D4 [×2], C2×C4×D4, D4⋊7M4(2)
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], M4(2) [×4], C22×C4 [×14], C24, C2×M4(2) [×6], C8○D4 [×2], C23×C4, 2+ (1+4) [×2], C22.11C24, C22×M4(2), C2×C8○D4, D4⋊7M4(2)
Generators and relations
G = < a,b,c,d | a4=b2=c8=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c5 >
(1 19 27 14)(2 20 28 15)(3 21 29 16)(4 22 30 9)(5 23 31 10)(6 24 32 11)(7 17 25 12)(8 18 26 13)
(1 10)(2 24)(3 12)(4 18)(5 14)(6 20)(7 16)(8 22)(9 26)(11 28)(13 30)(15 32)(17 29)(19 31)(21 25)(23 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14)(2 11)(3 16)(4 13)(5 10)(6 15)(7 12)(8 9)(17 25)(18 30)(19 27)(20 32)(21 29)(22 26)(23 31)(24 28)
G:=sub<Sym(32)| (1,19,27,14)(2,20,28,15)(3,21,29,16)(4,22,30,9)(5,23,31,10)(6,24,32,11)(7,17,25,12)(8,18,26,13), (1,10)(2,24)(3,12)(4,18)(5,14)(6,20)(7,16)(8,22)(9,26)(11,28)(13,30)(15,32)(17,29)(19,31)(21,25)(23,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28)>;
G:=Group( (1,19,27,14)(2,20,28,15)(3,21,29,16)(4,22,30,9)(5,23,31,10)(6,24,32,11)(7,17,25,12)(8,18,26,13), (1,10)(2,24)(3,12)(4,18)(5,14)(6,20)(7,16)(8,22)(9,26)(11,28)(13,30)(15,32)(17,29)(19,31)(21,25)(23,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28) );
G=PermutationGroup([(1,19,27,14),(2,20,28,15),(3,21,29,16),(4,22,30,9),(5,23,31,10),(6,24,32,11),(7,17,25,12),(8,18,26,13)], [(1,10),(2,24),(3,12),(4,18),(5,14),(6,20),(7,16),(8,22),(9,26),(11,28),(13,30),(15,32),(17,29),(19,31),(21,25),(23,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14),(2,11),(3,16),(4,13),(5,10),(6,15),(7,12),(8,9),(17,25),(18,30),(19,27),(20,32),(21,29),(22,26),(23,31),(24,28)])
Matrix representation ►G ⊆ GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 1 |
0 | 0 | 15 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 16 |
0 | 0 | 0 | 16 |
0 | 15 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 15 | 2 |
0 | 0 | 13 | 2 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 1 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,15,0,0,1,1],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,16,16],[0,2,0,0,15,0,0,0,0,0,15,13,0,0,2,2],[16,0,0,0,0,1,0,0,0,0,16,0,0,0,1,1] >;
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | C8○D4 | 2+ (1+4) |
kernel | D4⋊7M4(2) | C2×C22⋊C8 | C24.4C4 | C42.12C4 | C42.6C4 | C8×D4 | C8⋊9D4 | C8⋊6D4 | C2×C4×D4 | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | D4 | C22 | C4 |
# reps | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 2 | 1 | 4 | 2 | 8 | 2 | 8 | 8 | 2 |
In GAP, Magma, Sage, TeX
D_4\rtimes_7M_{4(2)}
% in TeX
G:=Group("D4:7M4(2)");
// GroupNames label
G:=SmallGroup(128,1706);
// by ID
G=gap.SmallGroup(128,1706);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,891,675,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^5>;
// generators/relations