Copied to
clipboard

G = M5(2)⋊C4order 128 = 27

5th semidirect product of M5(2) and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M5(2)⋊5C4, (C2×C8).2C8, C4.9(C4⋊C8), C8.34(C4⋊C4), (C2×C8).27Q8, (C2×C8).374D4, (C22×C4).4C8, C22.3(C4×C8), C4.3(C8⋊C4), C22.4(C4⋊C8), (C22×C8).15C4, C23.28(C2×C8), (C2×C4).54C42, (C2×C42).12C4, C4.31(C22⋊C8), C8.50(C22⋊C4), C2.3(C23.C8), (C2×M5(2)).8C2, (C2×C4).70M4(2), C22.38(C22⋊C8), (C22×C8).368C22, C4.27(C2.C42), C2.15(C22.7C42), (C2×C4).75(C2×C8), (C2×C8).116(C2×C4), (C2×C8⋊C4).18C2, (C2×C4).105(C4⋊C4), (C22×C4).468(C2×C4), (C2×C4).385(C22⋊C4), SmallGroup(128,109)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — M5(2)⋊C4
C1C2C4C2×C4C2×C8C22×C8C2×C8⋊C4 — M5(2)⋊C4
C1C2C22 — M5(2)⋊C4
C1C2×C4C22×C8 — M5(2)⋊C4
C1C2C2C2C2C4C4C22×C8 — M5(2)⋊C4

Generators and relations for M5(2)⋊C4
 G = < a,b,c | a16=b2=c4=1, bab=a9, cac-1=ab, bc=cb >

Subgroups: 104 in 70 conjugacy classes, 44 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C16, C42, C2×C8, C2×C8, C2×C8, C22×C4, C22×C4, C8⋊C4, C2×C16, M5(2), M5(2), C2×C42, C22×C8, C2×C8⋊C4, C2×M5(2), M5(2)⋊C4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C2.C42, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C22.7C42, C23.C8, M5(2)⋊C4

Smallest permutation representation of M5(2)⋊C4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 50)(2 59)(3 52)(4 61)(5 54)(6 63)(7 56)(8 49)(9 58)(10 51)(11 60)(12 53)(13 62)(14 55)(15 64)(16 57)(17 42)(18 35)(19 44)(20 37)(21 46)(22 39)(23 48)(24 41)(25 34)(26 43)(27 36)(28 45)(29 38)(30 47)(31 40)(32 33)
(1 36 50 27)(2 20 51 45)(3 46 52 21)(4 30 53 39)(5 40 54 31)(6 24 55 33)(7 34 56 25)(8 18 57 43)(9 44 58 19)(10 28 59 37)(11 38 60 29)(12 22 61 47)(13 48 62 23)(14 32 63 41)(15 42 64 17)(16 26 49 35)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,50)(2,59)(3,52)(4,61)(5,54)(6,63)(7,56)(8,49)(9,58)(10,51)(11,60)(12,53)(13,62)(14,55)(15,64)(16,57)(17,42)(18,35)(19,44)(20,37)(21,46)(22,39)(23,48)(24,41)(25,34)(26,43)(27,36)(28,45)(29,38)(30,47)(31,40)(32,33), (1,36,50,27)(2,20,51,45)(3,46,52,21)(4,30,53,39)(5,40,54,31)(6,24,55,33)(7,34,56,25)(8,18,57,43)(9,44,58,19)(10,28,59,37)(11,38,60,29)(12,22,61,47)(13,48,62,23)(14,32,63,41)(15,42,64,17)(16,26,49,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,50)(2,59)(3,52)(4,61)(5,54)(6,63)(7,56)(8,49)(9,58)(10,51)(11,60)(12,53)(13,62)(14,55)(15,64)(16,57)(17,42)(18,35)(19,44)(20,37)(21,46)(22,39)(23,48)(24,41)(25,34)(26,43)(27,36)(28,45)(29,38)(30,47)(31,40)(32,33), (1,36,50,27)(2,20,51,45)(3,46,52,21)(4,30,53,39)(5,40,54,31)(6,24,55,33)(7,34,56,25)(8,18,57,43)(9,44,58,19)(10,28,59,37)(11,38,60,29)(12,22,61,47)(13,48,62,23)(14,32,63,41)(15,42,64,17)(16,26,49,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,50),(2,59),(3,52),(4,61),(5,54),(6,63),(7,56),(8,49),(9,58),(10,51),(11,60),(12,53),(13,62),(14,55),(15,64),(16,57),(17,42),(18,35),(19,44),(20,37),(21,46),(22,39),(23,48),(24,41),(25,34),(26,43),(27,36),(28,45),(29,38),(30,47),(31,40),(32,33)], [(1,36,50,27),(2,20,51,45),(3,46,52,21),(4,30,53,39),(5,40,54,31),(6,24,55,33),(7,34,56,25),(8,18,57,43),(9,44,58,19),(10,28,59,37),(11,38,60,29),(12,22,61,47),(13,48,62,23),(14,32,63,41),(15,42,64,17),(16,26,49,35)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A···8H8I8J8K8L16A···16P
order12222244444444448···8888816···16
size11112211112244442···244444···4

44 irreducible representations

dim111111112224
type++++-
imageC1C2C2C4C4C4C8C8D4Q8M4(2)C23.C8
kernelM5(2)⋊C4C2×C8⋊C4C2×M5(2)M5(2)C2×C42C22×C8C2×C8C22×C4C2×C8C2×C8C2×C4C2
# reps112822883144

Matrix representation of M5(2)⋊C4 in GL6(𝔽17)

13110000
1140000
0091012
0015832
0043812
0097149
,
1600000
0160000
0016065
00016158
000010
000001
,
010000
1600000
00163154
0051710
00001010
0000127

G:=sub<GL(6,GF(17))| [13,11,0,0,0,0,11,4,0,0,0,0,0,0,9,15,4,9,0,0,1,8,3,7,0,0,0,3,8,14,0,0,12,2,12,9],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,6,15,1,0,0,0,5,8,0,1],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,16,5,0,0,0,0,3,1,0,0,0,0,15,7,10,12,0,0,4,10,10,7] >;

M5(2)⋊C4 in GAP, Magma, Sage, TeX

M_5(2)\rtimes C_4
% in TeX

G:=Group("M5(2):C4");
// GroupNames label

G:=SmallGroup(128,109);
// by ID

G=gap.SmallGroup(128,109);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,1430,1018,136,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^2=c^4=1,b*a*b=a^9,c*a*c^-1=a*b,b*c=c*b>;
// generators/relations

׿
×
𝔽