extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8)⋊1Q8 = C4⋊C4⋊Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8):1Q8 | 128,789 |
(C2×C8)⋊2Q8 = C2×C8⋊Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8):2Q8 | 128,1893 |
(C2×C8)⋊3Q8 = C42.252D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8):3Q8 | 128,1894 |
(C2×C8)⋊4Q8 = M4(2)⋊3Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8):4Q8 | 128,1895 |
(C2×C8)⋊5Q8 = M4(2)⋊4Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8):5Q8 | 128,1896 |
(C2×C8)⋊6Q8 = (C2×C8)⋊Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8):6Q8 | 128,790 |
(C2×C8)⋊7Q8 = C42.120D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8):7Q8 | 128,717 |
(C2×C8)⋊8Q8 = C42.125D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8):8Q8 | 128,725 |
(C2×C8)⋊9Q8 = C42.287C23 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8):9Q8 | 128,1693 |
(C2×C8)⋊10Q8 = C42.327D4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8):10Q8 | 128,716 |
(C2×C8)⋊11Q8 = C42.436D4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8):11Q8 | 128,722 |
(C2×C8)⋊12Q8 = C2×C8⋊2Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8):12Q8 | 128,1891 |
(C2×C8)⋊13Q8 = C42.364D4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8):13Q8 | 128,1892 |
(C2×C8)⋊14Q8 = C2×C8⋊3Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8):14Q8 | 128,1889 |
(C2×C8)⋊15Q8 = C2×C8⋊4Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8):15Q8 | 128,1691 |
(C2×C8)⋊16Q8 = C42.286C23 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8):16Q8 | 128,1692 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1Q8 = (C2×C8).1Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).1Q8 | 128,815 |
(C2×C8).2Q8 = C8.11C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).2Q8 | 128,115 |
(C2×C8).3Q8 = C23.9D8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).3Q8 | 128,116 |
(C2×C8).4Q8 = C8.13C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).4Q8 | 128,117 |
(C2×C8).5Q8 = C8.C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).5Q8 | 128,118 |
(C2×C8).6Q8 = C8.2C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).6Q8 | 128,119 |
(C2×C8).7Q8 = M5(2).C4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).7Q8 | 128,120 |
(C2×C8).8Q8 = C8.4C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).8Q8 | 128,121 |
(C2×C8).9Q8 = C8.(C4⋊C4) | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).9Q8 | 128,565 |
(C2×C8).10Q8 = C42.26Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).10Q8 | 128,579 |
(C2×C8).11Q8 = C42.106D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).11Q8 | 128,581 |
(C2×C8).12Q8 = C4.(C4×Q8) | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).12Q8 | 128,675 |
(C2×C8).13Q8 = C8⋊(C4⋊C4) | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).13Q8 | 128,676 |
(C2×C8).14Q8 = C42.28Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).14Q8 | 128,678 |
(C2×C8).15Q8 = M4(2).5Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).15Q8 | 128,683 |
(C2×C8).16Q8 = M4(2).6Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).16Q8 | 128,684 |
(C2×C8).17Q8 = M4(2).27D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).17Q8 | 128,685 |
(C2×C8).18Q8 = C2×C8.Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).18Q8 | 128,886 |
(C2×C8).19Q8 = M5(2)⋊3C4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).19Q8 | 128,887 |
(C2×C8).20Q8 = M5(2)⋊1C4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).20Q8 | 128,891 |
(C2×C8).21Q8 = M5(2).1C4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).21Q8 | 128,893 |
(C2×C8).22Q8 = C2.(C8⋊Q8) | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).22Q8 | 128,791 |
(C2×C8).23Q8 = C2.(C8⋊3Q8) | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).23Q8 | 128,816 |
(C2×C8).24Q8 = (C2×C8).24Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).24Q8 | 128,817 |
(C2×C8).25Q8 = C16⋊1C8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).25Q8 | 128,100 |
(C2×C8).26Q8 = C42.2C8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).26Q8 | 128,107 |
(C2×C8).27Q8 = M5(2)⋊C4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).27Q8 | 128,109 |
(C2×C8).28Q8 = M4(2).C8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).28Q8 | 128,110 |
(C2×C8).29Q8 = C8.5C42 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).29Q8 | 128,505 |
(C2×C8).30Q8 = (C2×C8).Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).30Q8 | 128,649 |
(C2×C8).31Q8 = C42.27Q8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).31Q8 | 128,672 |
(C2×C8).32Q8 = C42.124D4 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).32Q8 | 128,724 |
(C2×C8).33Q8 = M4(2).1C8 | φ: Q8/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).33Q8 | 128,885 |
(C2×C8).34Q8 = C8⋊2C16 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).34Q8 | 128,99 |
(C2×C8).35Q8 = C8.36D8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).35Q8 | 128,102 |
(C2×C8).36Q8 = C16⋊3C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).36Q8 | 128,103 |
(C2×C8).37Q8 = C16⋊4C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).37Q8 | 128,104 |
(C2×C8).38Q8 = C4⋊C4⋊3C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).38Q8 | 128,648 |
(C2×C8).39Q8 = C42.61Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).39Q8 | 128,671 |
(C2×C8).40Q8 = C42.437D4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).40Q8 | 128,723 |
(C2×C8).41Q8 = C8.7C42 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).41Q8 | 128,112 |
(C2×C8).42Q8 = C42.59Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).42Q8 | 128,577 |
(C2×C8).43Q8 = C42.60Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).43Q8 | 128,578 |
(C2×C8).44Q8 = C8⋊5(C4⋊C4) | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).44Q8 | 128,674 |
(C2×C8).45Q8 = C2×C16⋊3C4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).45Q8 | 128,888 |
(C2×C8).46Q8 = C2×C16⋊4C4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).46Q8 | 128,889 |
(C2×C8).47Q8 = C2×C8.5Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).47Q8 | 128,1890 |
(C2×C8).48Q8 = C8.9C42 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).48Q8 | 128,114 |
(C2×C8).49Q8 = C42.324D4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).49Q8 | 128,580 |
(C2×C8).50Q8 = C42.62Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).50Q8 | 128,677 |
(C2×C8).51Q8 = C23.25D8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).51Q8 | 128,890 |
(C2×C8).52Q8 = C8.8C42 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).52Q8 | 128,113 |
(C2×C8).53Q8 = C42.58Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).53Q8 | 128,576 |
(C2×C8).54Q8 = C8⋊7(C4⋊C4) | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).54Q8 | 128,673 |
(C2×C8).55Q8 = C2×C8.4Q8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).55Q8 | 128,892 |
(C2×C8).56Q8 = C42.7C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).56Q8 | 128,108 |
(C2×C8).57Q8 = M5(2)⋊7C4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).57Q8 | 128,111 |
(C2×C8).58Q8 = C4⋊C8⋊13C4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).58Q8 | 128,502 |
(C2×C8).59Q8 = C4⋊C8⋊14C4 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).59Q8 | 128,503 |
(C2×C8).60Q8 = C8.14C42 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).60Q8 | 128,504 |
(C2×C8).61Q8 = C4⋊M5(2) | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).61Q8 | 128,882 |
(C2×C8).62Q8 = C4⋊C4.7C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).62Q8 | 128,883 |
(C2×C8).63Q8 = C2×C8.C8 | φ: Q8/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).63Q8 | 128,884 |
(C2×C8).64Q8 = C22.7M5(2) | central extension (φ=1) | 128 | | (C2xC8).64Q8 | 128,106 |
(C2×C8).65Q8 = C8×C4⋊C4 | central extension (φ=1) | 128 | | (C2xC8).65Q8 | 128,501 |
(C2×C8).66Q8 = C2×C4⋊C16 | central extension (φ=1) | 128 | | (C2xC8).66Q8 | 128,881 |