Copied to
clipboard

G = C2×C86D4order 128 = 27

Direct product of C2 and C86D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C86D4, C42.680C23, (C2×C8)⋊33D4, C812(C2×D4), C4(C86D4), C4⋊C886C22, (C4×C8)⋊80C22, (C4×D4).27C4, C4.184(C4×D4), C41(C2×M4(2)), (C2×C4)⋊8M4(2), C24.79(C2×C4), C22⋊C875C22, (C2×C8).477C23, (C2×C4).647C24, C42.282(C2×C4), (C22×D4).39C4, C22.114(C4×D4), C4.193(C22×D4), (C4×D4).285C22, C22.42(C8○D4), (C2×M4(2))⋊75C22, (C22×M4(2))⋊24C2, (C22×C4).915C23, (C22×C8).509C22, (C23×C4).525C22, C23.104(C22×C4), C22.174(C23×C4), C2.11(C22×M4(2)), C22.63(C2×M4(2)), (C2×C42).1109C22, (C2×C4×C8)⋊42C2, (C2×C4⋊C8)⋊48C2, C2.45(C2×C4×D4), (C2×C4×D4).71C2, (C2×C4⋊C4).71C4, (C2×C4)(C86D4), C2.15(C2×C8○D4), C4⋊C4.222(C2×C4), (C2×C22⋊C8)⋊43C2, C4.298(C2×C4○D4), (C2×D4).231(C2×C4), (C2×C4).1572(C2×D4), (C2×C22⋊C4).48C4, C22⋊C4.72(C2×C4), (C2×C4).957(C4○D4), (C2×C4).463(C22×C4), (C22×C4).339(C2×C4), SmallGroup(128,1660)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C86D4
C1C2C4C2×C4C22×C4C22×C8C22×M4(2) — C2×C86D4
C1C22 — C2×C86D4
C1C22×C4 — C2×C86D4
C1C2C2C2×C4 — C2×C86D4

Generators and relations for C2×C86D4
 G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b5, dcd=c-1 >

Subgroups: 420 in 276 conjugacy classes, 156 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C22×D4, C2×C4×C8, C2×C22⋊C8, C2×C4⋊C8, C86D4, C2×C4×D4, C22×M4(2), C2×C86D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C24, C4×D4, C2×M4(2), C8○D4, C23×C4, C22×D4, C2×C4○D4, C86D4, C2×C4×D4, C22×M4(2), C2×C8○D4, C2×C86D4

Smallest permutation representation of C2×C86D4
On 64 points
Generators in S64
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)(49 60)(50 61)(51 62)(52 63)(53 64)(54 57)(55 58)(56 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 58 42 36)(2 59 43 37)(3 60 44 38)(4 61 45 39)(5 62 46 40)(6 63 47 33)(7 64 48 34)(8 57 41 35)(9 29 18 54)(10 30 19 55)(11 31 20 56)(12 32 21 49)(13 25 22 50)(14 26 23 51)(15 27 24 52)(16 28 17 53)
(1 36)(2 33)(3 38)(4 35)(5 40)(6 37)(7 34)(8 39)(9 50)(10 55)(11 52)(12 49)(13 54)(14 51)(15 56)(16 53)(17 28)(18 25)(19 30)(20 27)(21 32)(22 29)(23 26)(24 31)(41 61)(42 58)(43 63)(44 60)(45 57)(46 62)(47 59)(48 64)

G:=sub<Sym(64)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,58,42,36)(2,59,43,37)(3,60,44,38)(4,61,45,39)(5,62,46,40)(6,63,47,33)(7,64,48,34)(8,57,41,35)(9,29,18,54)(10,30,19,55)(11,31,20,56)(12,32,21,49)(13,25,22,50)(14,26,23,51)(15,27,24,52)(16,28,17,53), (1,36)(2,33)(3,38)(4,35)(5,40)(6,37)(7,34)(8,39)(9,50)(10,55)(11,52)(12,49)(13,54)(14,51)(15,56)(16,53)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(41,61)(42,58)(43,63)(44,60)(45,57)(46,62)(47,59)(48,64)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,58,42,36)(2,59,43,37)(3,60,44,38)(4,61,45,39)(5,62,46,40)(6,63,47,33)(7,64,48,34)(8,57,41,35)(9,29,18,54)(10,30,19,55)(11,31,20,56)(12,32,21,49)(13,25,22,50)(14,26,23,51)(15,27,24,52)(16,28,17,53), (1,36)(2,33)(3,38)(4,35)(5,40)(6,37)(7,34)(8,39)(9,50)(10,55)(11,52)(12,49)(13,54)(14,51)(15,56)(16,53)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(41,61)(42,58)(43,63)(44,60)(45,57)(46,62)(47,59)(48,64) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38),(49,60),(50,61),(51,62),(52,63),(53,64),(54,57),(55,58),(56,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,58,42,36),(2,59,43,37),(3,60,44,38),(4,61,45,39),(5,62,46,40),(6,63,47,33),(7,64,48,34),(8,57,41,35),(9,29,18,54),(10,30,19,55),(11,31,20,56),(12,32,21,49),(13,25,22,50),(14,26,23,51),(15,27,24,52),(16,28,17,53)], [(1,36),(2,33),(3,38),(4,35),(5,40),(6,37),(7,34),(8,39),(9,50),(10,55),(11,52),(12,49),(13,54),(14,51),(15,56),(16,53),(17,28),(18,25),(19,30),(20,27),(21,32),(22,29),(23,26),(24,31),(41,61),(42,58),(43,63),(44,60),(45,57),(46,62),(47,59),(48,64)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P4Q4R4S4T8A···8P8Q···8X
order12···222224···44···444448···88···8
size11···144441···12···244442···24···4

56 irreducible representations

dim111111111112222
type++++++++
imageC1C2C2C2C2C2C2C4C4C4C4D4M4(2)C4○D4C8○D4
kernelC2×C86D4C2×C4×C8C2×C22⋊C8C2×C4⋊C8C86D4C2×C4×D4C22×M4(2)C2×C22⋊C4C2×C4⋊C4C4×D4C22×D4C2×C8C2×C4C2×C4C22
# reps112181242824848

Matrix representation of C2×C86D4 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
160000
04700
081300
000130
000013
,
10000
081400
016900
000013
000130
,
160000
09500
01800
000013
00040

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,4,8,0,0,0,7,13,0,0,0,0,0,13,0,0,0,0,0,13],[1,0,0,0,0,0,8,16,0,0,0,14,9,0,0,0,0,0,0,13,0,0,0,13,0],[16,0,0,0,0,0,9,1,0,0,0,5,8,0,0,0,0,0,0,4,0,0,0,13,0] >;

C2×C86D4 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_6D_4
% in TeX

G:=Group("C2xC8:6D4");
// GroupNames label

G:=SmallGroup(128,1660);
// by ID

G=gap.SmallGroup(128,1660);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,723,184,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽